Выбрать главу

.

  Если Р. абсолютно сходится, то он и просто сходится. Р.

абсолютно сходится, а Р.

сходится, но не абсолютно. Сумма абсолютно сходящихся Р. и произведение абсолютно сходящегося Р. на число являются также абсолютно сходящимися Р. На абсолютно сходящиеся Р. наиболее полно переносятся свойства конечных сумм. Пусть

     (9)

— P., составленный из тех же членов, что и Р. (1), но взятых, вообще говоря, в другом порядке. Если Р. (1) сходится абсолютно, то Р. (9) также сходится и имеет ту же сумму, что и Р. (1). Если Р. (1) и Р. (6) абсолютно сходятся, то Р., полученный из всевозможных попарных произведений umun членов этих Р., расположенных в произвольном порядке, также абсолютно сходится, причём если сумма этого Р. равна s, а суммы Р. (1) и (6) равны соответственно s1 и s2, то s = s1s2, т. е. абсолютно сходящиеся Р. можно почленно перемножать, не заботясь о порядке членов. Признаки сходимости для Р. с неотрицательными членами применимы для установления абсолютной сходимости рядов.

  Для Р., не абсолютно сходящихся (такие Р. называют также условно сходящимися), утверждение о независимости их суммы от порядка слагаемых неверно. Справедлива теорема Римана: посредством надлежащего изменения порядка членов данного не абсолютно сходящегося Р. можно получить Р., имеющий наперёд заданную сумму, или расходящийся Р. Примером условно сходящегося Р. может служить Р.

.

Если в этом Р. переставить члены так, чтобы за двумя положительными следовал один отрицательный:

,

то его сумма увеличится в 1,5 раза. Существуют признаки сходимости, применимые к не абсолютно сходящимся Р. Например, признак Лейбница: если

, ,

то знакочередующийся Р.

     (10)

сходится. Более общие признаки можно получить, например, с помощью преобразования Абеля для Р., представимых в виде

.     (11)

Признак Абеля: если последовательность {an} монотонна и ограничена, а Р.

сходится, то Р. (11) также сходится. Признак Дирихле: если последовательность {an} монотонно стремится к нулю, а последовательность частичных сумм Р.

ограничена, то Р. (11) сходится. Например, по признаку Дирихле Р.

сходится при всех действительных a.

  Иногда рассматриваются Р. вида

.

  Такой Р. называется сходящимся, если сходятся Р.

 и

сумма этих Р. называется суммой исходного Р.

  Р. более сложной структуры являются кратные ряды, т. е. Р. вида

,

где  — заданные числа (вообще говоря, комплексные), занумерованные k индексами, n1, n2,..., nk, каждый из которых независимо от других пробегает натуральный ряд чисел. Простейшие из Р. этого типа — двойные ряды.

  Для некоторых числовых Р. удаётся получить простые формулы для величины или оценки их остатка, что весьма важно, например, при оценке точности вычислений, проводимых с помощью Р. Например, для суммы геометрической прогрессии (2)

rn = qn+1/(1 - q), ½q½< 1,

для P. (7) при сделанных предположениях

,

а для P. (10)

½rn½ £ un+1

С помощью некоторых специальных преобразований иногда удаётся «улучшить» сходимость сходящегося Р. В математике используются не только сходящиеся Р., но и расходящиеся. Для последних вводятся более общие понятия суммы Р. (см. Суммирование рядов и интегралов). Так, например, расходящийся Р. (5) можно просуммировать определённым способом к 1/2.

  Функциональные ряды. Понятие Р. естественным образом обобщается на случай, когда членами Р. являются функции un = un (x) (действительные, комплексные или, более общо, функции, значения которых принадлежат какому-то метрическому пространству), определённые на некотором множестве Е. В этом случае ряд

,      (11)

называется функциональным.

  Если Р. (11) сходится в каждой точке множества Е, то он называется сходящимся на множестве Е. Пример: Р.  сходится на всей комплексной плоскости. Сумма сходящегося Р. непрерывных, например, на некотором отрезке, функций не обязательно является непрерывной функцией. Условия, при которых на функциональные Р. переносятся свойства непрерывности, дифференцируемости и интегрируемости конечных сумм функций, формулируются в терминах равномерной сходимости Р. Сходящийся Р. (11) называется равномерно сходящимся на множестве Е, если во всех точках Е отклонение частичных сумм Р.