Выбрать главу

при достаточно больших номерах n от суммы Р.

не превышает одной и той же сколь угодно малой величины, точнее, каково бы ни было наперёд заданное число e > О, существует такой номер ne, что

для всех номеров n £ ne и всех точек х Î Е. Это условие равносильно тому, что

[ — верхняя грань  на Е]. Например, Р.

равномерно сходится на отрезке [0, q] при 0 < q < 1 и не сходится равномерно на отрезке [0, 1].

  Критерий Коши: для того чтобы Р. (11) равномерно сходился на множестве Е, необходимо и достаточно, чтобы для любого e > 0 существовал такой номер ne, что для всех номеров п ³ ne, р … 0 и всех точек выполнялось неравенство

Признак Вейерштрасса: если существует такой сходящийся числовой Р.

,

что ê, , n = 1, 2,..., то Р. (11) равномерно сходится на Е.

  Сумма равномерно сходящегося Р. непрерывных на некотором отрезке (или, более общо, на некотором топологическом пространстве) функций является непрерывной на этом отрезке (пространстве) функцией. Сумма равномерно сходящегося Р. интегрируемых на некотором множестве функций является интегрируемой на этом множестве функцией, и Р. можно почленно интегрировать. Если последовательность частичных сумм Р. интегрируемых функций сходится в среднем к некоторой интегрируемой функции, то интеграл от этой почти всюду сходящейся последовательностью частичных сумм является равномерной функции равен сумме Р. из интегралов от членов Р. Интегрируемость в этих теоремах понимается в смысле Римана или Лебега. Для интегрируемых по Лебегу функций достаточным условием возможности почленного интегрирования Р. с почти всюду сходящейся последовательностью частичных сумм является равномерная оценка их абсолютных величин некоторой интегрируемой по Лебегу функцией. Если члены сходящегося на некотором отрезке Р. (11) дифференцируемы на нём и Р. из их производных сходится равномерно, то сумма Р. также дифференцируема на этом отрезке и Р. можно почленно дифференцировать.

  Понятие функционального Р. обобщается и на случай кратных Р. В различных разделах математики и её приложениях широко используется разложение функции в функциональные Р., прежде всего в степенные ряды, тригонометрические ряды и, более общо, в Р. по специальным функциям некоторых операторов.

  К понятию бесконечных сумм подошли ещё учёные Древней Греции, у них уже встречалась сумма членов бесконечной геометрической прогрессии с положительным знаменателем меньшим единицы. Как самостоятельное понятие Р. вошёл в математику в 17 в. И. Ньютон и Г. Лейбниц систематически использовали Р. для решения уравнений как алгебраических, так и дифференциальных. Формальная теория Р. успешно развивалась в 18—19 вв. в работах Я. и И. Бернулли, Б. Тейлора, К. Маклорена, Л. Эйлера, Ж. Д' Аламбера, Ж. Лагранжа и др. В этот период использовались как сходящиеся, так и расходящиеся Р., хотя не было полной ясности в вопросе о законности действий над ними. Точная теория Р. была создана в 19 в. на основе понятия предела в трудах К. Гаусса, Б. Больцано, О. Коши, П. Дирихле, Н. Абеля, К. Вейерштрасса, Г. Римана и др.

  Лит.: Маркушевич А. И., Ряды. Элементарный очерк, 3 изд., М., 1957; Ильин В. А., Позняк Э. Г., Основы математического анализа, 3 изд., ч. 1—2, М., 1971—73; Кудрявцев Л. Д., Математический анализ, 2 изд., т. 1—2, М., 1973; Никольский С. М., Курс математического анализа, т. 1—2, М., 1973; Бахвалов Н. С., Численные методы, М., 1973.

  Л. Д. Кудрявцев.

(обратно)

Ряд напряжений

Ряд напряже'ний (реже — ряд активностей), последовательность расположения металлов и их ионов в порядке возрастания стандартных электродных потенциалов в растворах электролитов. Электродом сравнения обычно служит стандартный водородный электрод. Поэтому в Р. н. включают и водород, электродный потенциал которого принимается равным нулю. В СССР и многих других европейских странах электродному потенциалу принято давать знак, одинаковый со знаком заряда электрода из данного металла по отношению к стандартному водородному электроду (в США принято давать обратный знак). Наибольшие отрицательные потенциалы характерны для щелочных металлов (около — 3 в), за ними следуют щёлочноземельные металлы и т. д.; наиболее положительные потенциалы имеют благородные металлы (около + 1,5 в; численные значения см. в ст. Металлы, табл. 2 и 3). В Р. н. часто включают неметаллы, ионы и некоторые химические соединения. Наиболее распространённые металлы расположены в Р. н. в следующей последовательности: Li, К, Ca, Na, Mg, Al, Mn, Zn, Fe, Co, Ni, Sn, Pb, H2, Cu, Hg, Ag, Au (см. там же).