Выбрать главу

Схода точка

Схо'да то'чка, кажущаяся точка пересечения параллельных линий при изображении в перспективе. На перспективных изображениях С. т. параллельных прямых находится в пересечении плоскости картины с лучом зрения, параллельным этим прямым. См. также Начертательная геометрия.

Сходимости точка

Сходи'мости то'чка функционального ряда , такая точка x, что числовой ряд, составленный из значений функции un (x) в данной точке x, является сходящимся. Аналогично определяется С. т. для функциональной последовательности.

Сходимость

Сходи'мость, математическое понятие, означающее, что некоторая переменная величина имеет предел. В этом смысле говорят о С. последовательности, С. ряда, С. бесконечного произведения, С. непрерывной дроби, С. интеграла и т. д. Понятие С. возникает, например, когда при изучении того или иного математического объекта строится последовательность более простых в известном смысле объектов, приближающихся к данному, то есть имеющих его своим пределом (так, для вычисления длины окружности используется последовательность длин периметров правильных многоугольников, вписанных в окружность; для вычисления значений функций используются последовательности частичных сумм рядов, которыми представляются данные функции, и т. п.).

  С. последовательности {an}, n = 1, 2,..., означает существование у неё конечного предела ; С. ряда конечного предела (называемого суммой ряда) у последовательности его частичных сумм , ; С. бесконечного произведения b1 b2... bn конечного предела, не равного нулю, у последовательности конечных произведений pn = b1b2... bn, n = 1, 2,...; С. интеграла  от функции f (x), интегрируемой по любому конечному отрезку [а, b],— конечного предела у интегралов при b ® +µ, называется несобственным интегралом.

  Свойство С. тех или иных математических объектов играет существенную роль как в вопросах теории, так и в приложениях математики. Например, часто используется представление каких-либо величин или функций с помощью сходящихся рядов; так, для основания натуральных логарифмов е имеется разложение его в сходящийся ряд

 

  для функции sin х — в сходящийся при всех х ряд

 

Подобные ряды могут быть использованы для приближённого вычисления рассматриваемых величин и функций. Для этого достаточно взять сумму нескольких первых членов, при этом чем больше их взять, тем с большей точностью будет получено нужное значение. Для одних и тех же величин и функций имеются различные ряды, суммой которых они являются, например,

  ,

   .

При практических вычислениях в целях экономии числа операций (а следовательно, экономии времени и уменьшения накопления ошибок) целесообразно из имеющихся рядов выбрать ряд, который сходится «более быстро». Если даны два сходящихся ряда  и , и , . — их остатки, то 1-й ряд называется сходящимся быстрее 2-го ряда, если

  .

  Например, ряд

 

сходится быстрее ряда

  .

Используются и другие понятия «более быстро» сходящихся рядов. Существуют различные методы улучшения С. рядов, то есть методы, позволяющие преобразовать данный ряд в «более быстро» сходящийся. Аналогично случаю рядов вводится понятие «более быстрой» С. и для несобственных интегралов, для которых также имеются способы улучшения их С.

  Большую роль понятие С. играет при решении всевозможных уравнений (алгебраических, дифференциальных, интегральных), в частности при нахождении их численных приближённых решений. Например, с помощью последовательных приближений метода можно получить последовательность функций, сходящихся к соответствующему решению данного обыкновенного дифференциального уравнения, и тем самым одновременно доказать существование при определённых условиях решения и дать метод, позволяющий вычислить это решение с нужной точностью. Как для обыкновенных дифференциальных уравнений, так и уравнений с частными производными существует хорошо разработанная теория различных сходящихся конечноразностных методов их численного решения (см. Сеток метод). Для практического нахождения приближённых решений уравнений широко используются ЭВМ.

  Если изображать члены an последовательности {an} на числовой прямой, то С. этой последовательности к а означает, что расстояние между точками anи а становится и остаётся сколь угодно малым с возрастанием n. В этой формулировке понятие С. обобщается на последовательности точек плоскости, пространства и более общих объектов, для которых может быть определено понятие расстояния, обладающее обычными свойствами расстояния между точками пространства (например, на последовательности векторов, матриц, функций, геометрических фигур и т. д., см. Метрическое пространство). Если последовательность {an} сходится к а, то вне любой окрестности точки а лежит лишь конечное число членов последовательности. В этой формулировке понятие С. допускает обобщение на совокупности величин ещё более общей природы, в которых тем или иным образом введено понятие окрестности (см. Топологическое пространство).

  В математическом анализе используются различные виды С. последовательности функций {fn (x)} к функции f (x) (на некотором множестве М). Если  для каждой точки X (из М), то говорят о С. в каждой точке [если это равенство не имеет места лишь для точек, образующих множество меры нуль (см. Мера множества), то говорят о С. почти всюду]. Несмотря на свою естественность, понятие С. в каждой точке обладает многими нежелательными особенностями [например, последовательность непрерывных функций может сходиться в каждой точке к разрывной функции; из С. функций fn (x) к f (x) в каждой точке не следует, вообще говоря, С. интегралов от функций fn (x) к интегралу от f (x) и т. д.]. В связи с этим было введено понятие равномерной С., свободное от этих недостатков: последовательность {fn (x)} называется равномерно сходящейся к f (x) на множестве М, если

полную версию книги