Выбрать главу

  Л. Г. Кавтарадзе.

(обратно)

След аэродинамический

След аэродинами'ческий, область подторможенной жидкости или газа, возникающая за обтекаемым телом на некотором протяжении; представляет собой пограничный слой , сошедший с обтекаемого тела.

(обратно)

След матрицы

След ма'трицы, сумма диагональных элементов матрицы . Это понятие устанавливается только для квадратной матрицы  С. м. обозначается через SpA (от нем. Spur — след) или ТrА (от англ. tract — след). Таким образом: Sp А = a11 + a22 +... + ann .

  Если характеристическое уравнение матрицы А имеет корни (собственные значения ) l1 ,l2 ,...,ln , то .

(обратно)

Следов анализ

Следо'в ана'лиз, химико-аналитическое определение очень малых количеств элементов и соединений (менее 0,01%), находящихся в виде примесей к основным составным частям исследуемого объекта. Анализ производится из проб массой от долей мкг до нескольких г, в зависимости от вида исследуемого материала, и определяемые следовые количества находятся в пределах 10-9 — 10-4 г. Следовые количества элементов и соединений определяются, например, в таких объектах: морская вода, почва, городской воздух и воздух промышленных предприятий, металлы, растительные и животные клетки, реактивы, лекарства, питьевая вода, пищевые продукты. С. а. выражается не в % по массе, как обычно в количественном анализе , а в частях на миллион (млн-1 , или ppm («ппм»)].

  С. а. характеризуется специфическими особенностями и трудностями. Вследствие резкой разницы в содержании основных и следовых компонентов почти всегда требуется предварительное отделение последних и обогащение, чтобы можно было достигнуть пределов обнаружения определяемого вещества. При отделении следов компонентов наиболее часто используются методы жидкостной экстракции , дистилляции и возгонки, ионного обмена , хроматографии , соосаждения . В С. а. наиболее применимы спектрофотометрические методы в ультрафиолетовой и видимой областях, газовая хроматография, атомно-абсорбционный метод, нейтронно-активационный метод, эмиссионная спектрометрия, метод фотометрии пламени. Например, методом газовой хроматографии в пробе 1—50 мкл могут быть определены (с пламенно-ионизационным детектором) 1-10-5 мкг примеси углеводорода (около 10 млн -1 ), а с электронно-захватным детектором — около 0,1 млн-1 ; методом фотометрии пламени — около 0,05 млн-1 CS, К и около 0,01 млн-1 Na; нейтронно-активационным методом можно определить около 0,0001 млн-1 Al из пробы 10 г.

  При С. а. все реактивы, вода и другие растворители должны быть тщательно очищены, лабораторный воздух освобождается от пыли и возможных химических загрязнений, применяется химическая посуда из полиэтилена.

  Роль С. а. имеет тенденцию к возрастанию, особенно в связи с развитием экологических и биохимических исследований, атомной техники и производства полупроводниковых материалов.

  Лит.: Сендел Е., Колориметрические методы определения следов материалов, пер. с англ., М., 1964; Руководство по аналитической химии, пер. с нем., М., 1975.

  Ю. А. Клячко.

(обратно)

Следовые реакции

Следовы'е реа'кции (физиологические), изменения активности клетки (волокна) или целого организма после окончания непосредственной реакции на раздражитель. Наблюдаются у всех живых организмов как на уровне отдельных возбудимых образований (нервные и мышечные волокна, нейрон), так и целого организма. С. р. связаны с внутриклеточными молекулярными превращениями и с деятельностью различных отделов центральной нервной системы животных и человека; имеют значение в поведенческих реакциях организма — его безусловной и условнорефлекторной деятельности. С. р. подразделяют на кратковременные и долговременные. Кратковременные С. р. основаны на инерционности и циклическом характере процессов, возникающих в живых системах в ответ на приложенный стимул. Так, С. р. могут быть обусловлены инерционностью изменения ионных проницаемостей и круговым характером взаимоотношений между потенциалом, проницаемостью и ионными токами. В нейронных цепях С. р. в ряде случаев обусловлены циркуляцией нервных импульсов. В нервной или мышечной клетке (волокне) развиваются после потенциала действия (ГТД) и выражаются в следовых изменениях потенциалов (следовые деполяризация или гиперполяризация), возбудимости, метаболизма.