Выбрать главу

  Ю. М. Эдельштейн.

(обратно)

Собственные колебания

Со'бственные колеба'ния, свободные колебания, колебания в механической, электрической или какой-либо другой физической системе, совершающиеся при отсутствии внешнего воздействия за счёт первоначально накопленной энергии (вследствие наличия начального смещения или начальной скорости). Характер С. к. определяется главным образом собственными параметрами системы (массой, индуктивностью, ёмкостью, упругостью). В реальных системах вследствие рассеяния энергии С. к. всегда затухающие, а при больших потерях они становятся апериодическими. Подробнее см. в статье Колебания.

(обратно)

Собственные нужды электростанции

Со'бственные ну'жды электроста'нции, комплекс вспомогательного электрического оборудования электростанции, обеспечивающего бесперебойную работу её основных агрегатов (паровых котлов, турбогенераторов, ядерных реакторов или гидротурбин). В состав С. н. э. входят: силовая и осветительная электросети станции, аккумуляторные установки, аварийные источники электропитания, электродвигатели всех механизмов — насосов (водяных, нефтяных, масляных и т.д.), вентиляторов, а на наиболее распространённых тепловых электростанциях — также механизмов разгрузки железнодорожных вагонов, подачи топлива, угледробления и пылеприготовления.

  Электроприёмники С. н. э. подразделяют на группы в соответствии с требованиями бесперебойной работы. К группе наиболее ответственных (HO) относят электроприёмники, выход из строя которых приводит к нарушению нормального режима работы станции или к аварии. На ТЭС это — электродвигатели питательных насосов паровых котлов, на АЭС — системы управления и защиты реактора, механизмы расхолаживания реактора, на ГЭС — механизмы, обеспечивающие циркуляцию масла и воды в системах смазки и охлаждения, механизмы закрытия дроссельных затворов напорных трубопроводов. Организация работы HO электроприёмников предусматривает их надёжное резервирование, обеспечивающее высокую надёжность устройств С. н. э. Затраты электроэнергии на работу С. н. э. составляют (в % от общего кол-ва электроэнергии, вырабатываемой станцией) от 0,2 на ГЭС большой мощности до 12 на АЭС с. газовым теплоносителем.

  Лит.: Баптиданов Л. Н., Тарасов В. И., Электрооборудование электрических станций и подстанций, 3 изд., т. 1–2, М. — Л., 1959—60; Электротехнический справочник, 4 изд., т. 2, кн. 1, М., 1972.

  Б. А. Князевский.

(обратно)

Собственные функции

Со'бственные фу'нкции, понятие математического анализа. При решении многих задач математической физики (в теории колебаний, теплопроводности и т.д.) возникает необходимость в нахождении не равных тождественно нулю решений однородных линейных дифференциальных уравнений L (y) = lу, удовлетворяющих тем или иным краевым условиям. Такие решения называют С. ф. задачи, а соответствующие значения l — собственными значениями. Если дифференциальное уравнение с соответствующими краевыми условиями самосопряжённое (см. Самосопряжённое дифференциальное уравнение), то его собственные значения действительны, а С. ф., соответствующие различным собственным значениям, ортогональны. Если дифференциальное уравнение рассматривается на конечном отрезке и его коэффициенты не имеют на этом отрезке особенностей, то множество С. ф. счётно (задача имеет дискретный спектр); знание С. ф. и соответствующих собственных значений позволяет тогда при некоторых условиях получить решение задачи в виде ряда по С. ф. (см. Фурье метод). Если же уравнение рассматривается на бесконечном промежутке или его коэффициенты имеют особенности (например, если коэффициент при старшей производной обращается в нуль), может существовать континуум С. ф., и вместо разложения в ряд получается разложение в интеграл по С. ф., аналогичное представлению в виде Фурье интеграла. В этом случае говорят, что задача имеет непрерывный спектр. Многие специальные функции (ортогональные многочлены и др.) служат С. ф. некоторых уравнений.

  В теории интегральных уравнений С. ф. ядра К (х, у) называют функцию, удовлетворяющую при некотором значении l уравнению

  .

  Всякое симметрическое непрерывное ядро имеет С. ф. В этом случае всякая функция, представимая в виде

  ,

  может быть разложена в ряд по С. ф. Если ядро имеет особенности или задано в бесконечной области, то может также возникнуть непрерывный спектр.

  Наиболее общим образом С. ф. можно определить как собственные векторы линейных операторов в линейных функциональных пространствах. В квантовой механике С. ф. оператора, отвечающего какой-либо физической величине (см. Операторы в квантовой теории), соответствуют состояниям системы, в которых данная физическая величина имеет определённое значение.