Выбрать главу

  Лит.: Волошинов В. Н., Марксизм и философия языка, Л., [1929]; Булгаков С. Н., Философия имени, Париж, [1953]; Суперанская А. В., Общая теория имени собственного, М., 1973; Никонов В. А., Имя и общество, М., 1974.

  Ю. М. Эдельштейн.

Собственные колебания

Со'бственные колеба'ния, свободные колебания, колебания в механической, электрической или какой-либо другой физической системе, совершающиеся при отсутствии внешнего воздействия за счёт первоначально накопленной энергии (вследствие наличия начального смещения или начальной скорости). Характер С. к. определяется главным образом собственными параметрами системы (массой, индуктивностью, ёмкостью, упругостью). В реальных системах вследствие рассеяния энергии С. к. всегда затухающие, а при больших потерях они становятся апериодическими. Подробнее см. в статье Колебания.

Собственные нужды электростанции

Со'бственные ну'жды электроста'нции, комплекс вспомогательного электрического оборудования электростанции, обеспечивающего бесперебойную работу её основных агрегатов (паровых котлов,турбогенераторов,ядерных реакторовили гидротурбин). В состав С. н. э. входят: силовая и осветительная электросети станции, аккумуляторные установки, аварийные источники электропитания, электродвигатели всех механизмов — насосов (водяных, нефтяных, масляных и т.д.), вентиляторов, а на наиболее распространённых тепловых электростанциях — также механизмов разгрузки железнодорожных вагонов, подачи топлива, угледробления и пылеприготовления.

  Электроприёмники С. н. э. подразделяют на группы в соответствии с требованиями бесперебойной работы. К группе наиболее ответственных (HO) относят электроприёмники, выход из строя которых приводит к нарушению нормального режима работы станции или к аварии. На ТЭС это — электродвигатели питательных насосов паровых котлов, на АЭС — системы управления и защиты реактора, механизмы расхолаживания реактора, на ГЭС — механизмы, обеспечивающие циркуляцию масла и воды в системах смазки и охлаждения, механизмы закрытия дроссельных затворов напорных трубопроводов. Организация работы HO электроприёмников предусматривает их надёжное резервирование, обеспечивающее высокую надёжность устройств С. н. э. Затраты электроэнергии на работу С. н. э. составляют (в % от общего кол-ва электроэнергии, вырабатываемой станцией) от 0,2 на ГЭС большой мощности до 12 на АЭС с. газовым теплоносителем.

  Лит.: Баптиданов Л. Н., Тарасов В. И., Электрооборудование электрических станций и подстанций, 3 изд., т. 1–2, М. — Л., 1959—60; Электротехнический справочник, 4 изд., т. 2, кн. 1, М., 1972.

  Б. А. Князевский.

Собственные функции

Со'бственные фу'нкции, понятие математического анализа. При решении многих задач математической физики (в теории колебаний, теплопроводности и т.д.) возникает необходимость в нахождении не равных тождественно нулю решений однородных линейных дифференциальных уравнений L (y) = lу, удовлетворяющих тем или иным краевым условиям. Такие решения называют С. ф. задачи, а соответствующие значения l — собственными значениями. Если дифференциальное уравнение с соответствующими краевыми условиями самосопряжённое (см. Самосопряжённое дифференциальное уравнение), то его собственные значения действительны, а С. ф., соответствующие различным собственным значениям, ортогональны. Если дифференциальное уравнение рассматривается на конечном отрезке и его коэффициенты не имеют на этом отрезке особенностей, то множество С. ф. счётно (задача имеет дискретный спектр); знание С. ф. и соответствующих собственных значений позволяет тогда при некоторых условиях получить решение задачи в виде ряда по С. ф. (см. Фурье метод). Если же уравнение рассматривается на бесконечном промежутке или его коэффициенты имеют особенности (например, если коэффициент при старшей производной обращается в нуль), может существовать континуум С. ф., и вместо разложения в ряд получается разложение в интеграл по С. ф., аналогичное представлению в виде Фурье интеграла. В этом случае говорят, что задача имеет непрерывный спектр. Многие специальные функции (ортогональные многочленыи др.) служат С. ф. некоторых уравнений.

  В теории интегральных уравнений С. ф. ядра К (х, у) называют функцию, удовлетворяющую при некотором значении l уравнению

  .

  Всякое симметрическое непрерывное ядро имеет С. ф. В этом случае всякая функция, представимая в виде

  ,

  может быть разложена в ряд по С. ф. Если ядро имеет особенности или задано в бесконечной области, то может также возникнуть непрерывный спектр.

  Наиболее общим образом С. ф. можно определить как собственные векторылинейных операторов в линейных функциональных пространствах. В квантовой механике С. ф. оператора, отвечающего какой-либо физической величине (см. Операторыв квантовой теории), соответствуют состояниям системы, в которых данная физическая величина имеет определённое значение.

  Иногда С. ф. называют также фундаментальными функциями, характеристическими функциями и т.д.

Собуль Мариус Альбер

Со'буль (Soboul) Мариус Альбер (р. 27.4.1914, Амми-Мусса, Алжир), французский историк. Сын крестьянина. В 1936 окончил Сорбонну. В 1932—39 член парижской студенческой коммунистической организации, один из её руководителей. С 1939 член Французской компартии. Во время 2-й мировой войны 1939—45 активный участник Движения Сопротивления. В 1945—60 преподавал в лицеях Парижа, в 1960—1967 в Клермон-Ферранском университете. Ученик Ж. Лефевра, один из крупнейших исследователей истории Великой французской революции, с 1967 занимает кафедру истории Французской революции в Сорбонне и является директором института истории Французской революции (при Сорбонне). Генеральный секретарь «Общества робеспьеристских исследований» (с 1959) и член редколлегии органа этого общества «Annales historiques de la Revolution francaise». С. сосредоточил своё внимание на изучении революции «снизу»; его книга «Парижские санкюлоты...» (1958; сокращённый рус. пер. 1966) — наиболее полное, основанное на архивных материалах исследование о движении парижских народных низов в период якобинской диктатуры. В последующие годы С. опубликовал ряд обобщающих трудов по истории Франции накануне и в период Великой французской революции.

  Соч. (кроме указанного в статье): Histoire de la Revolution francaise, v. 1—2, P., 1964; La France a la veille de la Revolution..., 2 ed., P., 1974; Paysans, sansculottes et jacobins, P., 1966; Le Premier empire (1804—1815), P., 1973; в рус. пер. — Из истории Великой буржуазной революции 1789—1794 гг. и революции 1848 г. во Франции, М., 1960; Первая республика. 1792—1804, М., 1974.

Событие

Собы'тие, происшествие, важное явление, происшедшее в общественной или личной жизни. О юридическом С. см. Факт юридический, о С. в теории вероятностей см. Случайное событие.

Собэк

Собэ'к, Собэксан, горный хребет на Ю. Кореи, юго-западная ветвь Восточно-Корейских гор. Длина около 300 км, высота до 1594 м; является главным водоразделом Южной Кореи. С юга к С. примыкает массив Чирисан (высота до 1915 м). Сложен главным образом гранитами, гнейсами, кварцитами. Имеет острые гребни и крутые склоны. Месторождения золота (Кимчхон), молибдена (Чансу). На склонах широколиственные (дуб, ясень) и смешанные (с примесью ели, сосны) леса; в южной части — вечнозелёные леса.