Лит.: см. при ст. Квантовая механика .
А. Б. Говорков.
Тождественные частицы
Тожде'ственные части'цы , частицы, обладающие одинаковыми физическими свойствами: массой, спином , электрическим зарядом и др. внутренними характеристиками (квантовыми числами). Например, все электроны Вселенной считаются тождественными. Т. ч. подчиняются тождественности принципу . Понятие о Т. ч. как о частицах принципиально неразличимых — чисто квантово-механическое.
Лит.: см. к ст. Квантовая механика .
Тождество
То'ждество , основное понятие логики, философии и математики; используется в языках научной теорий для формулировки определяющих соотношений, законов и теорем.
В математике Т. — это уравнение , которое удовлетворяется тождественно, то есть справедливо для любых допустимых значений входящих в него переменных. С логической точки зрения, Т. — это предикат , изображаемый формулой х = у (читается: «х тождественно у », «х то же самое, что и y »), которому соответствует логическая функция, истинная, когда переменные х и у означают различные вхождения «одного и того же» предмета, и ложная в противном случае. С философской (гносеологической) точки зрения, Т. — это отношение , основанное на представлениях или суждениях о том, что такое «один и тот же» предмет реальности, восприятия, мысли.
Логические и философские аспекты Т. дополнительны: первый даёт формальную модель понятия Т., второй — основания для применения этой модели. Первый аспект включает понятие об «одном и том же» предмете, но смысл формальной модели не зависит от содержания этого понятия: игнорируются процедуры отождествлений и зависимость результатов отождествлений от условий или способов отождествлений, от явно или неявно принимаемых при этом абстракций. Во втором (философском) аспекте рассмотрения основания для применения логических моделей Т. связываются с тем, как отождествляются предметы, по каким признакам, и уже зависят от точки зрения, от условий и средств отождествления.
Различение логических и философских аспектов Т. восходит к известному положению, что суждение о тождественности предметов и Т. как понятие — это не одно и то же (см. Платон, Соч., т. 2, М., 1970, с. 36). Существенно, однако, подчеркнуть независимость и непротиворечивость этих аспектов: понятие Т. исчерпывается смыслом соответствующей ему логической функции; оно не выводится из фактической тождественности предметов, «не извлекается» из неё, а является абстракцией, восполняемой в «подходящих» условиях опыта или, в теории, — путём предположений (гипотез ) о фактически допустимых отождествлениях; вместе с тем, при выполнении подстановочности (см. ниже аксиому 4) в соответствующем интервале абстракции отождествления, «внутри» этого интервала, фактическое Т. предметов в точности совпадает с Т. в логическом смысле.
Важность понятия Т. обусловила потребность в специальных теориях Т. Самый распространённый способ построения этих теорий — аксиоматический. В качестве аксиом можно указать, например, следующие (не обязательно все):
1. х = х ,
2. х = у É у = х ,
3. x = y & y = z É x = z ,
4. А (х ) É (х = у É А (у )),
где А (х ) — произвольный предикат, содержащий х свободно и свободный для у , а А (х ) и А (у ) различаются только вхождениями (хотя бы одним) переменных х и y .
Аксиома 1 постулирует свойство рефлексивности Т. В традиционной логике она считалась единственным логическим законом Т., к которому в качестве «нелогических постулатов» добавляли обычно (в арифметике, алгебре, геометрии) аксиомы 2 и З. Аксиому 1 можно считать гносеологически обоснованной, поскольку она является своего рода логическим выражением индивидуации, на котором, в свою очередь, основывается «данность» предметов в опыте, возможность их узнавания: чтобы говорить о предмете «как данном», необходимо как-то выделить его, отличить от др. предметов и в дальнейшем не путать с ними. В этом смысле Т., основанное на аксиоме 1, является особым отношением «самотождественности», которое связывает каждый предмет только с самим собой — и ни с каким др. предметом.
Аксиома 2 постулирует свойство симметричности Т. Она утверждает независимость результата отождествления от порядка в парах отождествляемых предметов. Эта аксиома также имеет известное оправдание в опыте. Например, порядок расположения гирь и товара на весах различен, если смотреть слева направо, для покупателя и продавца, обращенных лицом друг к другу, но результат — в данном случае равновесие — один и тот же для обоих.
Аксиомы 1 и 2 совместно служат абстрактным выражением Т. как неразличимости, теории, в которой представление об «одном и том же» предмете основывается на фактах не наблюдаемости различий и существенно зависит от критериев различимости, от средств (приборов), отличающих один предмет от другого, в конечном счёте — от абстракции неразличимости. Поскольку зависимость от «порога различимости» на практике принципиально неустранима, представление о Т., удовлетворяющем аксиомам 1 и 2, является единственным естественным результатом, который можно получить в эксперименте.
Аксиома 3 постулирует транзитивность Т. Она утверждает, что суперпозиция Т. также есть Т. и является первым нетривиальным утверждением о тождественности предметов. Транзитивность Т. — это либо «идеализация опыта» в условиях «убывающей точности», либо абстракция, восполняющая опыт и «создающая» новый, отличный от неразличимости, смысл Т.: неразличимость гарантирует только Т. в интервале абстракции неразличимости, а эта последняя не связана с выполнением аксиомы З. Аксиомы 1, 2 и 3 совместно служат абстрактным выражением теории Т. как эквивалентности .
Аксиома 4 постулирует необходимым условием для Т. предметов совпадение их признаков. С логической точки зрения, эта аксиома очевидна: «одному и тому же» предмету принадлежат все его признаки. Но поскольку представление об «одном и том же» предмете неизбежно основывается на определённого рода допущениях или абстракциях, эта аксиома не является тривиальной. Её нельзя верифицировать «вообще» — по всем мыслимым признакам, а только в определённых фиксированных интервалах абстракций отождествления или неразличимости. Именно так она и используется на практике: предметы сравниваются и отождествляются не по всем мыслимым признакам, а только по некоторым — основным (исходным) признакам той теории, в которой хотят иметь понятие об «одном и том же» предмете, основанное на этих признаках и на аксиоме 4. В этих случаях схема аксиом 4 заменяется конечным списком её аллоформ — конгруентных ей «содержательных» аксиом Т. Например, в аксиоматической теории множеств Цермело — Френкеля — аксиомами: