Выбрать главу

  Вторая важная идея, лежащая в основе теории Эйнштейна, — утверждение, что Т., то есть искривление пространства-времени, определяется не только массой вещества, слагающего тело, но и всеми видами энергии, присутствующими в системе. Эта идея явилась обобщением на случай теории Т. принципа эквивалентности массы (m ) и энергии (Е ) специальной теории относительности, выражающейся формулой Е = mс 2 . Согласно этой идее, Т. зависит не только от распределения масс в пространстве, но и от их движения, от давления и натяжений, имеющихся в телах, от электромагнитного поля и всех др. физических полей.

  Наконец, в теории тяготения Эйнштейна обобщается вывод специальной теории относительности о конечной скорости распространения всех видов взаимодействия. Согласно Эйнштейну, изменения гравитационного поля распространяются в вакууме со скоростью с.

  Уравнения тяготения Эйнштейна

  В специальной теории относительности в инерциальной системе отсчёта квадрат четырёхмерного «расстояния» в пространстве-времени (интервала ds ) между двумя бесконечно близкими событиями записывается в виде:

  ds 2 = (cdt )2 - dx 2 - dy 2 - dz 2 (7)

  где t — время, х, у, z — прямоугольные декартовы (пространственные) координаты. Эта система координат называется галилеевой. Выражение (7) имеет вид, аналогичный выражению для квадрата расстояния в евклидовом трёхмерном пространстве в декартовых координатах (с точностью до числа измерений и знаков перед квадратами дифференциалов в правой части). Такое пространство-время называют плоским, евклидовым, или, точнее, псевдоевклидовым, подчёркивая особый характер времени: в выражении (7) перед (cdt )2 стоит знак «+», в отличие от знаков «—» перед квадратами дифференциалов пространственных координат. Таким образом, специальная теория относительности является теорией физических процессов в плоском пространстве-времени (пространстве-времени Минковского; см. Минковского пространство ).

  В пространстве-времени Минковского не обязательно пользоваться декартовыми координатами, в которых интервал записывается в виде (7). Можно ввести любые криволинейные координаты. Тогда квадрат интервала ds 2 будет выражаться через эти новые координаты общей квадратичной формой:

  ds 2 = g ik dx i dx k (8)

  (i , k = 0, 1, 2, 3), где x 1 , x 2 , x 3 — произвольные пространств, координаты, x 0 = ct — временная координата (здесь и далее по дважды встречающимся индексам производится суммирование). С физической точки зрения переход к произвольным координатам означает и переход от инерциальной системы отсчёта к системе, вообще говоря, движущейся с ускорением (причём в общем случае разным в разных точках), деформирующейся и вращающейся, и использование в этой системе не декартовых пространственных координат. Несмотря на кажущуюся сложность использования таких систем, практически они иногда оказываются удобными. Но в специальной теории относительности всегда можно пользоваться и галилеевой системой, в которой интервал записывается особенно просто. [В этом случае в формуле (8) g ik = 0 при i ¹ k, g 00 = 1, g ii = —1 при i = 1, 2, 3.]

  В общей теории относительности пространство-время не плоское, а искривленное. В искривленном пространстве-времени (в конечных, не малых, областях) уже нельзя ввести декартовы координаты, и использование криволинейных координат становится неизбежным. В конечных областях такого искривленного пространства-времени ds 2 записывается в криволинейных координатах в общем виде (8). Зная g ik как функции четырёх координат, можно определить все геометрические свойства пространства-времени. Говорят, что величины g ik определяют метрику пространства-времени , а совокупность всех g ik называют метрическим тензором. С помощью g ik вычисляются темп течения времени в разных точках системы отсчёта и расстояния между точками в трёхмерном пространстве. Так, формула для вычисления бесконечно малого интервала времени d t по часам, покоящимся в системе отсчёта, имеет вид:

 

  При наличии поля Т. величина g 00 в разных точках разная, следовательно, темп течения времени зависит от поля Т. Оказывается, что чем сильнее поле, тем медленнее течёт время по сравнению с течением времени для наблюдателя вне поля.

  Математическим аппаратом, изучающим неевклидову геометрию (см. Риманова геометрия ) в произвольных координатах, является тензорное исчисление . Общая теория относительности использует аппарат тензорного исчисления, её законы записываются в произвольных криволинейных координатах (это означает, в частности, запись в произвольных системах отсчёта), как говорят, в ковариантном виде.

полную версию книги