Термин «У.» употребляется (в отличном от указанного выше смысле) и в др. естественных науках, см., например, Уравнение времени (в астрономии), Уравнение состояния (в физике), Уравнения химические , Максвелла уравнения в электродинамике, Кинетическое уравнение Больцмана в теории газов.
(обратно)Уравнение времени
Уравне'ние вре'мени, разность между средним и истинным солнечным временем; равна разности прямых восхождений истинного и среднего Солнца. Часто У. в. определяют как разность истинного и среднего времени; в этом случае оно имеет противоположный знак, что нужно иметь в виду при пользовании справочниками.
У. в. непрерывно меняется. Это обусловлено тем, что истинное солнечное время, измеряемое часовым углом истинного Солнца, течёт неравномерно вследствие, во-первых, неравномерности движения Земли по орбите и, во-вторых, наклона эклиптики к экватору. Поэтому У. в. получается в результате сложения двух волн приблизительно синусоидальной формы и почти равной амплитуды (см. рис. ). Одна из этих волн имеет годичный, другая – полугодичный периоды. Четыре раза в году, а именно: около 16 апреля, 14 июня, 1 сентября и 25 декабря У. в. равно нулю и достигает 4 раза наибольшего значения (по абсолютной величине): около 12 февраля + 14,3 мин, 15 мая – 3,8 мин, 27 июля + 6,4 мин и 4 ноября – 16,4 мин. С помощью У. в. может быть найдено среднее местное солнечное время, если известно истинное солнечное время, определённое по наблюдениям Солнца, например с помощью солнечных часов; при этом пользуются формулой:
m = m 0 + h,
где m – среднее время, m 0 – истинное время, h – У. в. Значения У. в. на каждый день даются в астрономических ежегодниках и календарях. См. Время .
График уравнения времени: 1 — составляющая уравнения времени, определяемая неравномерностью движения Земли по орбите; 2 — составляющая уравнения времени, определяемая наклоном эклиптики к экватору; 3 — уравнение времени.
(обратно)Уравнение состояния
Уравне'ние состоя'ния,
связывает давление р,
объём V
и температуру Т физически однородной системы в состоянии равновесия термодинамического
: f
(p, V, Т
) =
0. Это уравнение называется термическим У. с., в отличие от калорического У. с., определяющего внутреннюю энергию
системы U
как функцию какого-либо двух из трёх параметров р, V, Т.
Термическое У. с. позволяет выразить давление через объём и температуру р = p
(V, Т
) и определить элементарную работу dA
= = p
dV
при бесконечно малом расширении системы dV
. У. с. является необходимым дополнением к термодинамическим законам, которое делает возможным их применение к реальным веществам. Оно не может быть выведено с помощью одних только законов термодинамики
,
а определяется или рассчитывается теоретически на основе представлений о строении вещества методами статистической физики
.
Из первого начала термодинамики
следует лишь существование калорического У. с., а из второго начала термодинамики
– связь между термическим и калорическим У. с.
Примерами У. с. для газов может служить Клапейрона уравнение для идеального газа p u = RT, где R – газовая постоянная , u – объём 1 моля газа;
Ван-дер-Ваальса уравнение