Выбрать главу

  Термин «У.» употребляется (в отличном от указанного выше смысле) и в др. естественных науках, см., например, Уравнение времени (в астрономии), Уравнение состояния (в физике), Уравнения химические , Максвелла уравнения в электродинамике, Кинетическое уравнение Больцмана в теории газов.

(обратно)

Уравнение времени

Уравне'ние вре'мени, разность между средним и истинным солнечным временем; равна разности прямых восхождений истинного и среднего Солнца. Часто У. в. определяют как разность истинного и среднего времени; в этом случае оно имеет противоположный знак, что нужно иметь в виду при пользовании справочниками.

  У. в. непрерывно меняется. Это обусловлено тем, что истинное солнечное время, измеряемое часовым углом истинного Солнца, течёт неравномерно вследствие, во-первых, неравномерности движения Земли по орбите и, во-вторых, наклона эклиптики к экватору. Поэтому У. в. получается в результате сложения двух волн приблизительно синусоидальной формы и почти равной амплитуды (см. рис. ). Одна из этих волн имеет годичный, другая – полугодичный периоды. Четыре раза в году, а именно: около 16 апреля, 14 июня, 1 сентября и 25 декабря У. в. равно нулю и достигает 4 раза наибольшего значения (по абсолютной величине): около 12 февраля + 14,3 мин, 15 мая – 3,8 мин, 27 июля + 6,4 мин и 4 ноября – 16,4 мин. С помощью У. в. может быть найдено среднее местное солнечное время, если известно истинное солнечное время, определённое по наблюдениям Солнца, например с помощью солнечных часов; при этом пользуются формулой:

  m = m 0 + h,

  где m – среднее время, m 0 – истинное время, h – У. в. Значения У. в. на каждый день даются в астрономических ежегодниках и календарях. См. Время .

График уравнения времени: 1 — составляющая уравнения времени, определяемая неравномерностью движения Земли по орбите; 2 — составляющая уравнения времени, определяемая наклоном эклиптики к экватору; 3 — уравнение времени.

(обратно)

Уравнение состояния

Уравне'ние состоя'ния, связывает давление р, объём V и температуру Т физически однородной системы в состоянии равновесия термодинамического : f (p, V, Т ) = 0. Это уравнение называется термическим У. с., в отличие от калорического У. с., определяющего внутреннюю энергию системы U как функцию какого-либо двух из трёх параметров р, V, Т. Термическое У. с. позволяет выразить давление через объём и температуру р = p (V, Т ) и определить элементарную работу dA = = p dV при бесконечно малом расширении системы dV . У. с. является необходимым дополнением к термодинамическим законам, которое делает возможным их применение к реальным веществам. Оно не может быть выведено с помощью одних только законов термодинамики , а определяется или рассчитывается теоретически на основе представлений о строении вещества методами статистической физики . Из первого начала термодинамики следует лишь существование калорического У. с., а из второго начала термодинамики – связь между термическим и калорическим У. с. , откуда вытекает, что для идеального газа внутренняя энергия не зависит от объёма  = 0. Термодинамика показывает, что для вычисления как термического, так и калорического У. с., достаточно знать любой из потенциалов термодинамических в виде функции своих параметров. Например, если известна Гельмгольцева энергия F как функция Т и V, то У. с. находят дифференцированием:

  , .

  Примерами У. с. для газов может служить Клапейрона уравнение для идеального газа p u = RT, где R – газовая постоянная , u – объём 1 моля газа;

  Ван-дер-Ваальса уравнение , где а и b – постоянные, зависящие от природы газа и учитывающие влияние сил притяжения между молекулами и конечность из объёма, вириальное У. с. для неидеального pu / RT = 1 + B (T )/ u + С (Т )/ u2 + .., где В (Т ), С (Т )... – 2-й, 3-й и т.д. вириальные коэффициенты, зависящие от сил взаимодействия между молекулами (см. Газы ). Это уравнение является наиболее надёжным и теоретически обоснованным У. с. для газов и позволяет объяснить многочисленные экспериментальные результаты на основании простых моделей межмолекулярного взаимодействия . Были предложены также различные эмпирические У. с., основанные на экспериментальных данных о теплоёмкости и сжимаемости. У. с. неидеальных газов указывает на существование критической точки (с параметрами p k , V k , T k ), в которой газообразная и жидкая фазы становятся идентичными (см. Критическое состояние ). Если У. с. представить в виде приведенного У. с., т. е. в безразмерных переменных p/p k , V/V k , T/T k , то при не слишком низких температурах это уравнение мало меняется для различных веществ (закон соответственных состояний ).