Например, требуется найти сумму F
колебаний f1
с амплитудой
Рис. к ст. Векторная диаграмма.
(обратно)Векторное исчисление
Ве'кторное исчисле'ние, математическая дисциплина, в которой изучают свойства операций над векторами евклидова пространства. При этом понятие вектора представляет собой математическую абстракцию величин, характеризующихся не только численным значением, но и направленностью (например, сила, ускорение, скорость).
Возникновение и развитие В. и. Возникновение В. и. тесно связано с потребностями механики и физики. До 19 в. для задания векторов использовался лишь координатный способ, и операции над векторами сводились к операциям над их координатами. Лишь в середине 19 в. усилиями ряда учёных было создано В. и., в котором операции проводились непосредственно над векторами, без обращения к координатному способу задания. Основы В. и. были заложены исследованиями английского математика У. Гамильтона и немецкого математика Г. Грасмана по гиперкомплексным числам (1844—50). Их идеи были использованы английским физиком Дж. К. Максвеллом в его работах по электричеству и магнетизму. Современный вид В. и. придал американский физик Дж. Гиббс. Значительный вклад в развитие В. и. внесли русские учёные. В первую очередь следует отметить работы М. В. Остроградского. Им была доказана основная теорема векторного анализа (см. Остроградского формула ). Исследования казанского математика А. П. Котельникова по развитию винтового исчисления имели важное значение для механики и геометрии. Эти исследования были продолжены советскими математиками Д. Н. Зейлигером и П. А. Широковым. Большое влияние на развитие В. и. имела книга «Векторный анализ», написанная в 1907 русским математиком П. О. Сомовым.
Векторная алгебра. Вектором называют направленный отрезок (рис. 1 ), то есть отрезок, у которого указаны начало (называется также точкой приложения вектора) и конец. Длина направленного отрезка, изображающего вектор, называется длиной, или модулем, вектора. Длина вектора a обозначается |a |. Векторы называются коллинеарными, если они лежат либо на одной прямой, либо на параллельных прямых. Два вектора называются равными, если они коллинеарны, имеют одинаковую длину и одинаково направлены. Все нулевые векторы считаются равными. Изображенные на рис. 1 векторы а и b коллинеарны и равны. В В. и. рассматриваются свободные векторы.
В векторной алгебре важную роль играют линейные операции над векторами: операция сложения векторов и умножения вектора на действительное число. Суммой а + b векторов а и b называют вектор, идущий из начала вектора а в конец вектора b при условии, что начало вектора b приложено к концу вектора а (рис. 2 ). Происхождение этого правила связано с правилом параллелограмма сложения векторов (рис. 3 ), источником которого является экспериментальный факт сложения сил (векторных величин) по этому правилу. Построение суммы нескольких векторов ясно из рис. 4 . Произведением aа вектора а на число a называется вектор, коллинеарный вектору а , имеющий длину, равную la l. la l, и направление, совпадающее с направлением а при a > 0 и противоположное а при a < 0. Вектор —1 · а называется противоположным вектору а и обозначается —а . Операции сложения векторов и умножения вектора на число обладают следующими свойствами:
1) а + b = b + a ,
2) (a + b ) + c = a + (b + c ),
3) а + 0 = а ,
4) a + (-a ) = 0 ,
5) 1 · a = a ,
6) a (ba ) = (ab ) a ,
7) a (a + b ) = aа + ab ,
8) (a + b ) a = aa + ba .
В векторной алгебре часто используется понятие линейно зависимых и линейно независимых векторов. Векторы a1 , a2 , ..., a n называются линейно зависимыми, если найдутся такие числа a1 , a2 ,..., an из которых хотя бы одно отлично от нуля, что линейная комбинация (a1 a1 +... + an a n ) этих векторов равна нулю. Векторы a1 , a2 ,..., an , не являющиеся линейно зависимыми, называются линейно независимыми. Отметим, что любые три ненулевых вектора, не лежащие в одной плоскости, являются линейно независимыми.
Векторы евклидова пространства обладают следующим свойством: существуют три линейно независимых вектора, любые же четыре вектора линейно зависимы. Это свойство характеризует трехмерность рассматриваемого множества векторов. В сочетании с перечисленными выше свойствами указанное свойство означает, что совокупность всех векторов евклидова пространства образует, так называемое, векторное пространство . Линейно независимые векторы e2 , e2 , e3 , образуют базис. Любой вектор а может быть единственным образом разложен по базису: а = Xe2 + Ye2 + Ze3 ; коэффициенты X, Y, Z называются координатами (компонентами) вектора а в данном базисе. Если вектор а имеет координаты X, Y, Z , то это записывают так: а = íX, Y, Z ý. Три взаимно ортогональных (перпендикулярных) вектора, длины которых равны единице и которые обычно обозначают так: i, j, k , образуют, так называемый ортонормированный базис. Если эти векторы поместить началами в одну точку О, то они образуют в пространстве декартову прямоугольную систему координат. Координаты X, Y, Z любой точки М в этой системе определяются как координаты вектора ОМ (рис. 5 ). Указанным выше линейным операциям над векторами отвечают аналогичные операции над их координатами: если координаты векторов а и b равны соответственно íX1 , Y1 , Z1 ý и íX2 , Y2 , Z2 ý, то координаты суммы а + b этих векторов равны íX1 + X2 , Y1 + Y2 , Z1 + Z2 ý, координаты вектора la равны ílX1 + lY1 + lZ1 ý.