причём равенство нулю имеет место лишь приa = . Если в ортонормированном базисе i, j, k векторы а и b имеют соответственно координаты íX1 , Y1 , Z1 ý и íХ2 , Y2 , Z2 ý, то (a , b ) = X1 X2 + Y1 Y2 + Z1 Z2,
Для определения векторного произведения векторов нужно понятие левой и правой упорядоченной тройки векторов. Упорядоченная тройка векторов а, b, с (а— первый вектор, b — второй, с — третий), приведённых к общему началу и не лежащих в одной плоскости, называется правой (левой), если они располагаются так, как могут быть расположены соответственно большой, несогнутый указательный и средний пальцы правой (левой) руки. На рис. 6 изображены справа — правая, а слева — левая тройки векторов.
Векторным произведением векторов a и b называют вектор, обозначаемый [a, b ] и удовлетворяющий следующим требованиям: 1) длина вектора [a, b ] равна произведению длин векторов a и b на синус угла j между ними (таким образом, если a и b коллинеарны, то [a, b ] = ); 2) если a и b неколлинеарны, то [a, b ] перпендикулярен каждому из векторов a и b и направлен так, что тройка векторов a , b, [a, b ] является правой. Векторное произведение обладает следующими свойствами:
[a , b ] = — [b , а ], [(la ), b ] = l [a , b ],
[с , (a +b )] = [с , a ] + [с , b ], [a , [b , с ]] =b (a , с ) — с (a , b ),
([a , b ], [с , d ]) = (a , c )(b , d ) — (a , d )(b , c ).
Если в ортонормированном базисе i, j, k , образующем правую тройку, векторы a и b имеют соответственно координаты íX1 , Y1 , Z1 ý и íX2 , Y2 , Z2 ý, то [a, b ] = íY1 Z2 — Y2 Z1 , Z1 X2 — Z2 X1 , X1 Y2 — X2 Y1 ý. Понятие векторного произведения связано с различными вопросами механики и физики. Например, скорость v точки М тела, вращающегося с угловой скоростью со вокруг оси l, равна [w, r ], где
Смешанным произведением векторов a, b и c называется скалярное произведение вектора [a, b ] на вектор с : ([a, b ], с ). Обозначается смешанное произведение символомabc . Смешанное произведение не параллельных одной плоскости векторов a , b и с численно равно объёму параллелепипеда, построенного на приведённых к общему началу векторах a , b и с , взятому со знаком плюс, если тройка a , b и с правая, и со знаком минус, если тройка левая. Если же векторы a , b и с параллельны одной плоскости, тоabc = 0 . Справедливо также следующее свойствоabc =bca =cab . Если координаты векторов a , b и с в ортонормированном базисе i, j, k , образующем правую тройку, соответственно равны íX1 , Y1 , Z1 ý, íX2 , Y2 , Z2 ý и íХ3 , Y3 , Z3 ý, то
Вектор-функции скалярных аргументов. В механике, физике, дифференциальной геометрии широко используется понятие вектор-функции одного или нескольких скалярных аргументов. Если каждому значению переменной t из некоторого множества ít ý ставится в соответствие по известному закону определённый вектор r , то говорят, что на множестве ít ý задана вектор-функция (векторная функция) r =r (t ). Так как вектор r определяется координатами íx, y, z ý, то задание вектор-функции r = r (t ) эквивалентно заданию трёх скалярных функций: х = x (t ), y = y (t ), z = z (t ). Понятие вектор-функции становится особенно наглядным, если обратиться к так называемому годографу этой функции, то есть к геометрическому месту концов всех векторов r (t ), приложенных к началу координат О (рис. 7 ). Если при этом рассматривать аргумент t как время, то вектор-функция r (t ) представляет собой закон движения точки М, движущейся по кривой L — годографу функции r (t ).
Для изучения вектор-функций важную роль играет понятие производной. Это понятие вводится следующим образом: аргументу t придаётся приращение Dt ¹ 0 и вектор Dr =r (t + Dt ) — r (t ) (на рис. 7 это вектор ) множится на 1/Dt . Предел выражения Dr /Dt при Dt ® 0 называется производной вектор-функции r (t ) и обозначается r ' (t ) или dr /dt . Производная представляет собой вектор, касательный к годографу L в данной точке М. Если вектор-функция рассматривается как закон движения точки по кривой L, то производная r ' (t ) равна скорости движения этой точки. Правила вычисления производных различных произведений вектор-функций подобны правилам вычисления производных произведений обычных функций. Например,
(r1 , r2 )' = (r '1 , r2 ) + (r1 , r '2 ),
[r1 , r2 ]’ = [r '1 , r2 ] + [r1 , r '2 ].