В. п. называется n-мepным (или имеет «размерность n» ), если в нём существуют n линейно независимых элементов e1 , e2 ,..., en , а любые n + 1 элементов линейно зависимы (обобщённое условие В). В. п. называются бесконечномерным, если в нём для любого натурального n существует n линейно независимых векторов. Любые n линейно независимых векторов n-мepного В. п. образуют базис этого пространства. Если e1 , e2 ,..., en — базис В. п., то любой вектор х этого пространства может быть представлен единственным образом в виде линейной комбинации базисных векторов:
x = a1 e1 + a2 e2 +... + an en .
При этом числа a1 , a2, ..., an называются координатами вектора х в данном базисе.
Примеры В. п. Множество всех векторов трёхмерного пространства образует, очевидно, В. п. Более сложным примером может служить так называемое n-мерное арифметическое пространство. Векторами этого пространства являются упорядоченные системы из n действительных чисел: l 1 , l 2 ,..., l n . Сумма двух векторов и произведение на число определяются соотношениями:
(l1 , l2 , …, ln ) + (m1 , m2 , …, mn ) = (l1 + m1 , l2 + m2 , …, ln + mn );
a (l1 , l2 , …, ln ) = (al1 , al2 , …, aln ).
Базисом в этом пространстве может служить, например, следующая система из n векторов e1 = (1, 0,..., 0), e2 = (0, 1,..., 0),..., en = (0, 0,..., 1).
Множество R всех многочленов a + a1 u + … + an un (любых степеней n ) от одного переменного с действительными коэффициентами a , a1 ,..., an с обычными алгебраическими правилами сложения многочленов и умножения многочленов на действительные числа образует В. п. Многочлены 1, u, u2 ,..., un (при любом n ) линейно независимы в R, поэтому R — бесконечномерное В. п.
Многочлены степени не выше n образуют В. п. размерности n + 1 ; его базисом могут служить многочлены 1, u, u2 ,..., un .
Подпространства В. п. В. п. R' называется подпространством R, если R' Í R (то есть каждый вектор пространства R' есть и вектор пространства R ) и если для каждого вектора v Î r' и для каждых двух векторов v1 и v2 (v1 , v2 Î R' ) вектор lv (при любом l ) и вектор v1 + v2 один и тот же независимо от того, рассматриваются ли векторы v, v1 ,v2 как элементы пространства R' или R. Линейной оболочкой векторов x1 , x2 ,... xp называется множество всевозможных линейных комбинаций этих векторов, то есть векторов вида a1 x1 + a2 x2 + … + ap xp . В трёхмерном пространстве линейной оболочкой одного ненулевого вектора x1 будет, очевидно, совокупность всех векторов, лежащих на прямой, определяемой вектором x1 . Линейной оболочкой двух не лежащих на одной прямой векторов x1 и x2 будет совокупность всех векторов, расположенных в плоскости, которую определяют векторы x1 и x2 . В общем случае произвольного В. п. R линейная оболочка векторов x1 , x2 ,..., xp этого пространства представляет собой подпространство пространства R размерности р. В n-мерном В. п. существуют подпространства всех размерностей, меньших р. Всякое конечномерное (данной размерности k ) подпространство R' В. п. R есть линейная оболочка любых k линейно независимых векторов, лежащих в R'. Пространство, состоящее из всех многочленов степени £ n (линейная оболочка многочленов 1, u, u2 ,..., un ), есть (n + 1 )- мepное подпространство пространства R всех многочленов.
Евклидовы пространства. Для развития геометрических методов в теории В. п. нужно указать пути обобщения таких понятий, как длина вектора, угол между векторами и т.п. Один из возможных путей заключается в том, что любым двум векторам х и у из R ставится в соответствие число, обозначаемое (х, у ) и называемое скалярным произведением векторов х и у. При этом требуется, чтобы выполнялись следующие аксиомы скалярного произведения:
1) (х, у ) = (у, х ) (перестановочность);
2) (x1 + x2 , y ) = (x1 , y ) + (x2 , y ) (распределительное свойство);
3) (ax, у ) = a (х, у ),
4) (х, х ) ³ 0 для любого х , причем (х, х ) = 0 только для х = 0 .
Обычное скалярное произведение в трёхмерном пространстве этим аксиомам удовлетворяет. В. п., в котором определено скалярное произведение, удовлетворяющее перечисленным аксиомам, называется евклидовым пространством; оно может быть как конечномерным (n-мерным), так и бесконечномерным. Бесконечномерное евклидово пространство обычно называют гильбертовым пространством . Длина |x | вектора x и угол между векторами х и у евклидова пространства определяются через скалярное произведение формулами
Примером евклидова пространства может служить обычное трёхмерное пространство со скалярным произведением, определяемым в векторном исчислении. Евклидово n-мepное (арифметическое) пространство En получим, определяя в n -мepном арифметическом В. п. скалярное произведение векторов x = (l1 , …, ln ) и y = (m1 , …, mn ) соотношением
(x, y ) = l1 m1 + l2 m2 +… + ln mn . (2)
При этом требования 1)—4), очевидно, выполняются.
В евклидовых пространствах вводится понятие ортогональных (перпендикулярных) векторов. Именно векторы х и у называются ортогональными, если их скалярное произведение равно нулю: (х, у ) = 0. В рассмотренном пространстве En условие ортогональности векторов x = (l1 , …, ln ) и y = (m1 , …, mn ), как это следует из соотношения (2), имеет вид:
l1 m1 + l2 m2 +… + ln mn = 0. (3)