Выбрать главу

.

  Лит.: Бонч-Бруевич В. Д., Избр. соч., т. 2, М., 1961, с. 377—452; Баренбаум И. Е., Давыдова Т. Е., История книги, ч. 1, М., 1960, с. 173—74.

  Е. С. Петропавловский.

Впечатывание изображений

Впеча'тывание изображе'ний, способ получения фотографического снимка комбинированной проекционной или контактной печатью. Внесение искусственных изменений и дополнений в первоначальный снимок особенно необходимо, когда создаются иллюстрации к народным сказкам, фантастическим сюжетам или в жанре сатиры. Приёмов В. и. много. Они позволяют не только совмещать изображения с разных негативов, но и получать своеобразные фотографические изображения в виде фотобарельефа и др. В простом виде В. и. часто применяют для оживления фотографического снимка пейзажа добавлением облаков, взятых с другого негатива (см. рис.). Для этого отдельно экспонируют на листе фотобумаги вначале пейзаж, закрывая небо маской, а затем облака, закрывая пейзаж контрмаской.

  Лит.: Плужников Б. Ф., Занимательная фотография, 2 изд., М., 1967.

Фотографический снимок комбинированный, с впечатанными облаками.

Фотографический снимок с негатива, содержащего пейзаж.

Фотографический снимок с негатива, содержащего облака.

Вписанные и описанные фигуры

Впи'санные и опи'санные фигу'ры в элементарной геометрии. Многоугольник называется вписанным в выпуклую кривую, а кривая — описанной около многоугольника, если все вершины многоугольника лежат на кривой (рис. 1). Многоугольник называется описанным вокруг кривой, а кривая — вписанной в многоугольник, если каждая сторона многоугольника или её продолжение касается кривой. В качестве кривой чаще всего рассматривается окружность. Всякий треугольник имеет одну описанную и одну вписанную окружности (рис. 2). Выпуклый четырёхугольник имеет описанную окружность тогда и только тогда, когда сумма противоположных углов составляет 180° (рис. 3). Для того чтобы четырёхугольник имел вписанную окружность, необходимо и достаточно, чтобы сумма длин одной пары противолежащих сторон равнялась сумме длин другой пары (рис. 4). Многоугольник может быть вписан в окружность, если этим свойством обладают четырёхугольники, образованные диагональю многоугольника и тремя сторонами, а также если перпендикуляры, проведённые через середины сторон, пересекаются в одной точке. Вписанная окружность существует в том и только в том случае, когда биссектрисы внутренних углов многоугольника пересекаются в одной точке. В проективной геометрии важную роль играют теоремы о шестиугольнике, вписанном в коническое сечение (см. Паскаля теорема) и описанном около него (см. Брианшона теорема).

  В. и о. Ф. рассматриваются и в пространстве. В этом случае вместо многоугольника рассматривается многогранник, а вместо выпуклой линии — выпуклая поверхность, чаще всего сфера (рис. 5). Можно говорить также о конусе или цилиндре, вписанном в сферу, о сфере, вписанной в конус (рис. 6), и т.п.

  Лит.: Перепёлкин Д. И., Курс элементарной геометрии, ч. 1—2, М. — Л., 1948—49.

Рисунок к ст. Вписанные и описанные фигуры.

Вписанный угол

Впи'санный у'гол, угол, вершина которого лежит на плоской кривой, а стороны являются хордами этой кривой. Если кривая есть окружность, то В. у. равен половине соответствующего центрального угла.

Впрыскивание

Впры'скивание, инъекция, введение небольших количеств лекарств в растворе или эмульсии шприцем с иглой в подкожную клетчатку, внутримышечно или в вену. При В. достигается более быстрое, чем при приёме внутрь, действие лекарств, их точная дозировка, надёжность эффекта. В. можно вводить лекарственные препараты при любом состоянии больного (отсутствие сознания, невозможность глотания и т.п.). Для местного действия растворы лекарств вводят в полости плевры, суставов; внутрикожное В. применяют для обезболивания и с диагностической целью (например, Манту реакция для выявления туберкулёза). К внутрисердечному В. прибегают при внезапной остановке сердца (поражение электрическим током, отравление газами, наркоз), В. в спинномозговой канал проводят для обезболивания и лечения некоторых заболеваний. При В. обязательно соблюдение правил асептики. См. также Вливание.

полную версию книги