Приравняв ΔE v/c2 = vΔm, находим, что ΔE/c2 = Δm. Невысокая скорость v нашей частицы сокращается! Поскольку v << c, ответ не зависит от v. Умножив обе части формулы на c2, получим ΔE= Δmc2. Частица теряет массу. Количество утраченной массы Δm, умноженное на c2, дает количество энергии, унесенной фотонами ΔE. Убираем знаки «дельта» (Δ) с обеих сторон тождества и получаем E= mc2. Энергия, отдаваемая двумя фотонами, равна произведению массы, которую утрачивает частица, на скорость света в квадрате c2. Теряя массу, частица испускает некоторое количество энергии, определяемое по формуле E = mc2. Во множестве книг объясняется важность этой формулы и рассказывается, как она устроена, но там не пишут, как выводится эта формула. Теперь мы вам об этом рассказали.
Приложение 2
Бекенштейн, энтропия черных дыр и информация
На современных шестидюймовых[48] жестких дисках можно хранить примерно по 5 терабайт, или 4 × 1013 бит, информации. Сколько бит информации, в принципе, возможно записать на шестидюймовый жесткий диск? Во-первых, поскольку это мысленный эксперимент, вообразим, что наш жесткий диск сферический – так мы сможем вложить в этот объем максимум информации. Наш жесткий диск получится размером примерно с грейпфрут, его радиус составит 7,5 см. Бекенштейн показал, что черная дыра обладает конечной энтропией, пропорциональной площади ее горизонта событий. В итоге оказалось, что энтропия горизонта черной дыры (S) в точности равна 1/4 площади горизонта событий, если измерить эту площадь в планковских единицах в квадрате (в конечном итоге точное значение вычислил Хокинг). В планковских единицах площадь поверхности черной дыры радиусом 7,5 см составляет 4π(7,5 см/1,6 × 10–33 см)2 = 2,76 × 1068. Четверть от этого значения составит энтропия S = 6,9 × 1067. Конкретное значение энтропии (возрастания неупорядоченности) соответствует конкретной мере уничтожения информации. Количество битов этой информации, соответствующее энтропии S, составляет S/ln 2. Натуральный логарифм от 2 (обозначенный в этой формуле «ln 2») равен 0,69. Здесь присутствует двойка, так как один бит информации – это один ответ на вопрос «да/нет», то есть вопрос, предполагающий два варианта ответа. (Например, игра «Да или нет» с 20 вопросами дает 20 битов информации.) Если я скажу вам, что задумал число от 1 до 220(около миллиона), то, пытаясь его угадать, вы первым делом должны спросить: «Оно во второй половине этого интервала?» Узнав, в какой оно части, продолжайте делить этот диапазон пополам, и через 20 вопросов узнаете, какое число я загадал. Следовательно, возникновение черной дыры радиусом 7,5 см – это повышение неупорядоченности во Вселенной, равное уничтожению 1068 бит информации. Есть 21068 различных способов создать такую черную дыру, взяв для нее 1068 бит информации, и, как только черная дыра сформируется, вся эта информация о ее составе будет потеряна. Если на вашем шестидюймовом диске записано более 1068 битов информации, и вы станете подвергать его гравитационному коллапсу, сжимая, пока он не превратится в микроскопическую черную дыру, то вся эта информация будет потеряна. Впрочем, вы не сможете создать микроскопическую черную дыру, поскольку при черная дыра, при образовании которой теряется более 1068 битов информации, должна иметь диаметр больше 6 дюймов. Противоречие. Что же произойдет на самом деле, если мы попытаемся впихнуть все больше и больше информации на жесткий диск с фиксированным радиусом 7,5 см? Его масса будет расти и расти, пока не наступит момент, когда на нем окажется 1068 бит информации, а масса диска в 8,4 раза превысит массу Земли и он сколлапсирует, превратившись в черную дыру. Следовательно, 1068 бит информации (1,16 × 1058гигабайт) – предельное количество информации, которое можно сохранить на шестидюймовом жестком диске.
48
Диаметр пластин в современных жестких дисках составляет 3,5 или, чаще, 2,5 дюйма. –