Яркость – простая штука, мне она нравится. Хотите расскажу? Опишу устройство, которое сам я не собирал, но вы можете запатентовать, если желаете. Это устройство называется масломет: заряжается куском масла. Спереди у него такой носик, откуда разбрызгивается масло (см. рис. 5.2).
Расположим ломтик хлеба в 30 см от масломета. Я откалибровал орудие так, чтобы порция масла полностью, до краешков, покрывала ломтик, расположенный на расстоянии 30 см. Если вам нравится намазывать масло на хлеб до самого края, то вы оцените такое изобретение. Теперь допустим, что я хочу сэкономить деньги, как любой хороший бизнесмен: хочу замазать тем же количеством масла несколько ломтиков хлеба. Но масло все равно должно распределяться по ломтику равномерно. Первый ломтик мы отставляли на 30 см, а эти отставим на 60 см. Масляный аэрозоль разлетится на большую площадь. На двойном расстоянии один залп поможет замаслить площадь в 2 ломтика шириной и 2 ломтика высотой. То есть масляный аэрозоль накроет решетку размером 2 × 2 хлебных ломтика, всего намажет 4 ломтика. Всего лишь удвоили расстояние – и уже смогли намазать маслом 4 ломтика. Если утроить расстояние, то можно побиться о заклад, что аэрозоля хватит, чтобы намазать 3 × 3 = 9 ломтиков хлеба. Один ломтик, четыре ломтика, девять ломтиков. Сколько масла попадает на один ломтик хлеба, расположенный на расстоянии 90 см, по сравнению с ломтиком, который был удален всего на 30 см? Одна девятая. Хлеб все равно орошается маслом, но вдевятеро слабее. Клиент будет недоволен, зато понятно, к чему я клоню.
Рис. 5.2. Масломет. Он может размазать порцию масла по одному ломтику хлеба, удаленному на расстояние 30 см, по четырем ломтикам хлеба, удаленным на 60 см, или по девяти ломтикам, удаленным на 90 см. Предоставлено Дж. Ричардом Готтом
Я хочу показать, что в работе такого масломета заложен важный закон природы. Если бы вместо масла у нас был свет, то его интенсивность уменьшалась бы ровно такими же темпами, что и количество масла на один ломтик. В конце концов, свет летит по прямой линии, как и капельки масляного аэрозоля, и распределяется по тому же принципу. На расстоянии 60 см интенсивность света 100-ваттной лампочки будет составлять всего 1/4 от ее же интенсивности на расстоянии 30 см. На расстоянии 90 см останется всего 1/9 интенсивности, на расстоянии 120 см – 1/16 интенсивности, на расстоянии 150 см – 1/25 интенсивности и так далее. Интенсивность падает пропорционально квадрату расстояния – обратно квадрату. На самом деле, мы только что вывели важный физический закон, описывающий, как с увеличением расстояния ослабевает интенсивность излучения, закон обратных квадратов. Помните ньютоновскую формулу Gmamb/r2? «Эр в квадрате» в знаменателе демонстрирует отношение по закону обратных квадратов, принцип тот же, что и в масломете. Гравитация и масломет обладают схожими свойствами.
Рис. 5.3. Солнце – это сфера. Солнечное излучение распределяется по площади 4πr2, перед этим проходя через сферу радиусом r. Предоставлено Дж. Ричардом Готтом
Представьте себе источник света, подобный Солнцу, излучающий во всех направлениях (рис. 5.3). Далее предположим, что я заключу Солнце в огромную сферу, равную по радиусу земной орбите (1 а.е.). Солнце излучает свет во всех направлениях, и часть светового потока я перекрываю. Я получаю лишь ничтожную долю того света, что проходит через сферу, в центре которой находится Солнце, причем радиус этой сферы равен расстоянию от Солнца до меня. Чему равна площадь этой большой сферы? Она равна 4πr2, где r – радиус сферы. Из всего солнечного света та доля, что попадает в мой детектор, равна площади детектора, деленной на площадь этой огромной сферы (4πr2). Если я отодвинусь на вдвое большее расстояние, то размер моего детектора не уменьшится, а радиус сферы увеличится вдвое (2 а.е.) и площадь, через которую будут проникать лучи Солнца, станет вчетверо больше. В мой детектор попадет лишь четверть фотонов от того количества, что мне удавалось поймать, когда я был на расстоянии 1 а.е. от Солнца. Яркость выражается в ваттах на квдратный метр, улавливаемых моим детектором. Чтобы вычислить яркость, которую я буду наблюдать в радиусе r от Солнца, я беру светимость Солнца (в ваттах) и делю ее на площадь сферы – 4πr2. Таким образом я узнаю, сколько ватт от Солнца получаю в пересчете «количество ватт на квадратный метр». Умножаю это значение на площадь моего детектора (скажем, телескопа) и узнаю, сколько энергии в секунду он получает. Если L – светимость Солнца, то яркость Солнца (B), которую я буду наблюдать, вычисляется по формуле B = L/4πr2, где r – расстояние от Солнца до меня. По мере увеличения этого расстояния знаменатель (4πr2) растет, и яркость снижается. На Нептуне, который расположен в 30 раз дальше от Солнца, чем Земля, Солнце кажется в 900 раз тусклее, чем у нас.