Выбрать главу

Рис. 6.2. Схема энергетических уровней водорода. Горизонтальными линиями обозначены различные энергетические уровни в атоме водорода в электрон-вольтах (эВ). Стрелками обозначены переходы электрона, при которых он может перескочить с одного энергетического уровня на другой, излучая фотон, энергия которого равна разности потенциалов между этими уровнями. Показаны переходы на первый энергетический уровень (серия Лаймана, где излучаются фотоны в ультрафиолетовой части спектра), на второй энергетический уровень (серия Бальмера, где излучаются фотоны видимого света) и на третий уровень (серия Пашена, ближний инфракрасный диапазон). На схеме показано, как электроны спускаются между энергетическими уровнями и излучают фотоны. Если электрон был на энергетическом уровне n = 3 и опустился на энергетический уровень n = 2, то он испустит фотон Hα (серия Бальмера) с энергией 1,9 эВ.

Предоставлено Майклом Строссом

(Теперь у атома появился заряд, и это уже не атом, а ион.) Энергия ускользнувшего электрона выше нуля; она преобразуется в кинетическую энергию движения, при помощи которой электрон вырывается из атома. Как вы, возможно, уже догадались, атом может ионизироваться и в том случае, если в него врежется другой атом.

Теперь, имея представление об энергетических уровнях, мы понимаем, как светится звезда, имеющая температуру 10 000 К. При температуре 10 000 К она настолько горяча, что у небольшой, но значительной доли атомов водорода электроны окажутся в первом возбужденном состоянии n = 2. Вот почему я выбрал звезду именно с такой температурой – она максимально наглядно иллюстрирует ситуацию, которую я собираюсь описать. Глубоко внутри звезды складывается спектр теплового излучения, красивая кривая Планка. Она пытается проявиться во внешних слоях звезды; этот сплошной тепловой спектр в 10 000 К выдавливает атомы водорода в верхние слои, причем некоторые электроны в этих атомах находятся в первом возбужденном состоянии; это голодные электроны. Можно спросить: сколько энергии у отдельных фотонов в таком тепловом спектре? Энергии многих из этих фотонов соответствуют видимой части спектра, просто так сложилось. И в водороде, разогретом до 10 000 К, есть атомы с голодными электронами, расположеными на энергетическом уровне n = 2; эти электроны, как бешеные, глотают подходящие фотоны, а после этого поднимаются на более высокие энергетические уровни.

Но поглощаются не все фотоны, а лишь те, чья длина волны позволяет электрону подняться на строго определенный энергетический уровень. Например, электрон на уровне n = 2 (с энергией –3,4 эВ) может поглотить фотон, энергии которого как раз хватает для перехода на уровень n = 3 (это энергия –1,5 эВ; см. рис. 6.2). Разница потенциалов между двумя этими энергетическими уровнями составляет 1,9 эВ. Именно столько энергии нужно электрону для перехода со второго на третий энергетический уровень. Такой электрон поглотит фотон с энергией 1,9 эВ. Такой фотон обозначается Hα. Длина его волны составляет 6563 ангстрем, или 656,3 нанометра, а цвет его волны – темно-красный. Фотон изымается из спектра, проталкивая при этом электрон со второго на третий энергетический уровень. Поскольку это происходит сразу с множеством электронов, в планковском спектре возникает провал, соответствующий длине волны 6563 ангстрем; он называется линией поглощения H-альфа (Hα). Фотоны с длиной волны 4861 ангстрем могут поднять электрон со второго на четвертый уровень; возникает другой провал под названием линия поглощения H-бета (Hβ). Есть и другие такие линии: H-гамма (Hγ) на 4340 ангстрем, H-дельта (Hδ) на 4102 ангстрем и так далее; фотоны с такими длинами волн изымаются из спектра, поднимая электроны с энергетического уровня n = 2 на уровни n = 5, n = 6,… Получается сплошной спектр, так называемый спектр поглощения, в котором выбиты узкие линии на уровне тех фотонов, что поглощаются наиболее активно. Такие глубокие расщелины в спектре именуются линиями поглощения. Вся группа этих линий называется серией Бальмера: Hα, Hβ, Hγ, Hδ, Hε, далее H6, H7, H8 (никто не собирается запоминать столько греческих букв). Пространство между этими линиями соответствует различиям в разнице потенциалов на лестничной диаграмме. На рис 6.3 показан спектр звезды с поверхностной температурой 10 000 К. На вставке крупным планом показана коротковолновая часть спектра.