Выбрать главу

Все это происходит при температуре 15 миллионов кельвинов в центре Солнца, каждую секунду 4 миллиона тонн материи там превращаются в энергию. Мы осознали, что звезды из главной последовательности преобразуют водород в гелий. В конце концов весь водород в ядре звезды будет израсходован, и после этого начинается хаос: звездная оболочка расширяется, и звезда превращается в красный гигант. Примерно через 5 миллиардов лет Солнце станет красным гигантом, отбросит свою газовую оболочку и постепенно превратится в белый карлик. Более массивные звезды превратятся в красные гиганты, а затем – в красные сверхгиганты. Они могут взорваться как сверхновые, и на месте их ядер останутся нейтронные звезды или черные дыры. Мы вернемся к этой теме в главе 8.

Пока давайте вновь поговорим о диаграмме Герцшпрунга – Расселла. На ней есть главная последовательность, красные гиганты и белые карлики, причем температура звезд увеличивается справа налево, а светимость – снизу вверх. Спектральные классы звезд имеют буквенные обозначения. Некоторые из них сохранились со времен старой классификации, когда спектральные классы именовались в алфавитном порядке, но, как бы то ни было, система по-прежнему в ходу: OBAFGKMLTY. Каждая буква обозначает класс звезд с определенной температурой поверхности; Солнце относится к спектральному классу G. Приблизительные поверхностные температуры и цвета звезд таковы:

O (> 33 000 K, голубые)

B (10 000–33 000 K, бело-голубые)

A (7500–10 000 K, белые или бело-голубые)

F (6000–7500 K, белые)

G (5200–6000 K, желтые)

K (3700–5200 K, оранжевые) и

M (2000–3700 K, красные),

все они есть на рис. 7.1. Еще правее, за пределами нашей диаграммы, будут звезды остальных классов: L (1300–2000 K, красные), T (700–1300 K, красные) и Y (< 700 K, инфракрасные). Если обратить внимание на шкалу температур в нижней части рисунка, то понятно, какие звезды к каким классам относятся. Спика – звезда класса B, Сириус – звезда класса A, Процион – звезда класса F, а Глизе 581 – звезда класса M. Каждая звезда занимает на диаграмме определенную позицию как по горизонтали, соответствующую ее температуре (чем левее – тем жарче), так и по горизонтали, в зависимости от светимости (чем выше – тем ярче). Естественно, Солнце обладает ровно одной солнечной светимостью по определению. Это хорошо заметно, если обратить внимание на светимость Солнца по вертикали. На этой диаграмме используется логарифмическая шкала, на которую можно нанести огромный диапазон наблюдаемых значений светимости. Каждое деление соответствует возрастанию светимости в 10 раз.

По верхнему краю на рис. 7.1 расположены звезды, светимость которых в миллион раз превышает солнечную. По нижнему краю находятся звезды со светимостью в 1/100 000 от солнечной. Разброс светимости звезд в пределах главной последовательности просто ошеломляет. Оказывается, что звезды в верхнем конце главной последовательности всего в 60 раз превосходят Солнце по массе, но не в миллион раз. В нижней части главной последовательности находятся звезды вдесятеро легче Солнца, но, как я уже говорил, они гораздо, гораздо тусклее Солнца. Итак, диапазон масс велик, однако он не идет ни в какое сравнение с диапазоном светимости. На самом деле, можно описать формальное отношение, характеризующее, как светимость звезды в главной последовательности зависит от ее массы, но эта зависимость нелинейна: светимость пропорциональна массе, возведенной в степень 3,5. Таким образом, две звезды, масса которых слегка отличается, могут обладать очень разной светимостью.

А теперь – классные расчеты. Начнем с E = mc2. Эту формулу помнят все. Все знают, что ее придумал Эйнштейн, но немногие понимают ее смысл. Дедушка Альберт вывел ее в 1905 году. Как мы уже обсуждали, это уравнение означает следующее: некоторую массу можно преобразовать в энергию согласно такому отношению, где c соответствует колоссальной скорости света, а если ее возвести в квадрат – получается очень большая величина. Именно эта формула описывает мощь, заключенную в атомных бомбах. О происхождении этого уравнения и о Специальной теории относительности Эйнштейна речь пойдет в главе 18.

Если звезда обладает определенной массой и определенной светимостью – сколько она просуществует? Разумеется, то же самое можно спросить и о вашей машине с бензиновым двигателем: вы знаете, какова полная емкость бака, знаете, каков расход топлива на километр в литрах. Зная эти данные, можно предположить, как скоро в машине кончится бензин. Светимость звезды характеризует то, сколько энергии она излучает в единицу времени. Если умножить срок жизни звезды t на ее светимость L, то можно вычислить общее количество энергии, которую она сгенерирует в течение жизни, – tL. Нам известна светимость звезды, темпы расхода ее топлива, а также мы знаем, каковы запасы ее топлива (водорода). Таким образом, какова продолжительность жизни звезды на главной последовательности? Общая энергия, которую может выделить звезда в ходе термоядерного водородного синтеза, пропорциональна ее массе M. Как вы помните, E = mc2. Общая энергия, излучаемая звездой, пропорциональна M, а также пропорциональна tL, поэтому M пропорциональна tL. Соответственно t пропорциональна M/L. Если L пропорциональна M3,5, как я говорил выше, то t пропорциональна M/M3,5, либо, что то же самое, пропорциональна 1/M2,5. Чем массивнее звезда, тем меньше она просуществует!