Выбрать главу

Кстати, а как определить основные параметры Солнца: радиус, массу и светимость? Солнечный радиус измеряется в несколько этапов. Радиус Земли известен со времен древнегреческого математика и географа Эратосфена, вычислившего его около 240 года до н. э. Каждый год, ровно в полдень 21 июня Солнце проходит прямо над египетским городом Сиеной. Эратосфену это было известно. В то же время он измерил, что Солнце на 7,2° отклоняется от вертикали в городе Александрия, что лежит прямо на север от Сиены. Аристотель утверждал, что Земля, независимо от ориентации, во время лунного затмения всегда отбрасывает на Луну круглую тень. Единственное тело, которое всегда отбрасывает круглую тень, – это сфера; следовательно, Эратосфен знал, что Земля должна иметь форму шара. Он также понимал, что смещение высоты Солнца на 7,2° при одновременном измерении высоты в двух разных городах обусловлено тем, что между этими городами – примерно 7,2° широты, либо 1/50 всей окружности Земли (360°). Нанимаем землемера – посчитать расстояние от Александрии до Сиены, умножаем это расстояние на 50 и узнаем длину земной окружности – около 40 тысяч километров. Делим на 2π и получаем радиус. Все было просто, достаточно было догадаться, как это сделать!

Из разных обсерваторий, находящихся в различных точках Земли, мы получаем немного разное положение Марса на фоне далеких звезд. Зная радиус Земли и измеряя такие смещения вызванные параллаксом, можно измерить расстояние до Марса. Впервые это сделал Джованни Кассини. Работа Кеплера позволила определить размеры планетных орбит – и построить масштабную модель Солнечной системы. Зная расстояние между Землей и Марсом, можно вывести размеры всех орбит, в том числе радиус земной орбиты – одну астрономическую единицу. Следовательно, в 1672 году Кассини определил, что расстояние от Земли до Солнца составляет примерно 140 миллионов километров – что не слишком отличается от истинного значения 150 миллионов километров.

Известен и угловой размер Солнца при наблюдении с Земли (примерно полградуса). Зная эту величину и расстояние от Земли до Солнца, можно определить радиус Солнца. Он равен половине углового диаметра Солнца в градусах (1/4°), разделить на 360°, умножить на 2π и на расстояние от Земли до Солнца. Итак, радиус Солнца – примерно 700 тысяч километров, что примерно в 109 раз больше радиуса Земли. Светимость Солнца также легко определить: измеряем, какова яркость Солнца при наблюдении с Земли, и, с учетом расстояния r, по закону обратных квадратов вычисляем светимость Солнца: около 4 × 1026 ватт.

Также можно вычислить массу Солнца. Законы Ньютона позволяют вывести соотношение между массами Земли и Солнца. Мы знаем, какое ускорение возникает на расстоянии, равном земному радиусу (то есть ускорение на поверхности Земли), GMЗЕМЛ/rЗЕМЛ2 = 9,8 метра в секунду за секунду, эту величину можно узнать, наблюдая, как падают яблоки. Мы также знаем, какое ускорение дает Солнце на расстоянии 1 а.е.: GMСОЛН/(1 а.е.)2 = 0,006 метра в секунду за секунду, эту величину мы уже вычислили в главе 3. Берем отношение двух этих значений ускорения: 0,006 метра в секунду за секунду/9,8 метра в секунду за секунду = 0,0006 = [GMСОЛН/(1 а.е.)2]/[GMЗЕМЛ/rЗЕМЛ2] = (MСОЛН/MЗЕМЛ) = (rЗЕМЛ/1 а.е.)2. Подставив в эту формулу известные значения радиуса Земли и одной астрономической единицы и решив выражение, узнаем, что масса Солнца примерно в 330 000 раз превышает массу Земли. Поскольку постоянная G сокращается, ее не обязательно знать, чтобы определить соотношение масс Солнца и Земли.

Но какова масса Земли в килограммах? Массу можно было бы вычислить на основе тождества с ускорением свободного падения на поверхности Земли, равного 9,8 метра в секунду за секунду = GMЗЕМЛ/rЗЕМЛ2, если бы только мы знали числовое значение ньютоновской постоянной G. Генри Кавендиш, первооткрыватель водорода, самого распространенного элемента во Вселенной, поставил хитроумный эксперимент, чтобы определить значение G. Он воспользовался крутильными весами, чтобы определить соотношение сил, воздействующих на экспериментальный шар со стороны Земли и со стороны находящегося рядом свинцового шара, который весит 159 кг. Земля тянет экспериментальный шар вниз, а свинцовый шар тянет его вбок, и две эти силы можно сравнить, измерив угол отклонения крутильных весов. Зная расстояние до свинцового шара и до центра Земли, Кавендиш определил соотношение масс Земли и свинцового шара. Так в 1798 году он смог вычислить значение ньютоновской постоянной G и массу Земли в килограммах. Умножим ее на 330 000 – и получим массу Солнца. Оказывается, Солнце весит 2 × 1030 кг. Это много!