Выбрать главу

Три этих дополнительных фактора – атмосфера, эксцентриситет и сложности с двойными звездами – видимо, уменьшают вероятность того, что в зоне обитаемости звезды найдется планета, но и суммарно все они, пожалуй, не понижают fHP вдвое. Поэтому я бы уменьшил показатель fHP с 0,009 чуть ниже чем до ~0,006.

Когда Фрэнк Дрейк впервые выводил свое уравнение в 1960-е годы, еще не было известно ни одной экзопланеты. Поэтому значение fHP было просто версией. Но сегодня у нас есть данные, позволяющие уточнить эту оценку. Именно так и должно работать это уравнение. Оно стимулирует нас собирать данные и находить особенности.

Результат fHP ~ 0,006 воодушевляет. Посмотрим, что выясняется в таком случае. Ближайшая звезда удалена от нас на 4 световых года. Уйдем в 10 раз дальше – на 40 световых лет. Объем сферы радиусом 40 световых лет будет в 1000 раз больше, чем у сферы радиусом 4 световых года, и в этой большой сфере окажется около 1000 звезд. Если мы в среднем оцениваем fHP ~ 0,006, то в таком радиусе должно быть как минимум 6 потенциально обитаемых планет. Да, на расстоянии всего 40 световых лет от Солнца могут быть планеты, пригодные для жизни! То есть серии из первого сезона «Звездного пути», летящие во все стороны со скоростью света в виде электромагнитных волн, уже достигли какой-то жизнепригодной планеты, на поверхности которой есть жидкая вода.

В 1970-е годы Британское межпланетное общество провело исследование под названием «проект Дедал», в ходе которого проверялось, насколько возможны межзвездные перелеты. Был смоделирован двухъярусный корабль высотой 190 метров, работающий на термоядерном двигателе, заправленном 50 000 тонн дейтерия и гелия-3. Такой корабль примерно вдвое длиннее и в 16 раз массивнее ракеты «Сатурн V», доставившей астронавтов на Луну. Этот колоссальный корабль с термоядерной тягой мог бы развить скорость в 12 % от скорости света. Он мог бы нести 500 тонн полезной научной нагрузки, в том числе два пятиметровых оптических телескопа и два двадцатиметровых радиотелескопа. Такой корабль преодолел бы 40 световых лет за 333 года. Телеметрия с него достигла бы Земли еще за 40 лет – соответственно мы получили бы отклик от «Дедала» через 373 года.

Еще лучше взять ракету таких же размеров и заправить ее веществом и антивеществом. Такая задача очень сложна с инженерной точки зрения: ведь вещество должно быть надежно изолировано от антивещества до тех самых пор, пока они не соединятся в двигателе. Однако при сгорании такого топлива 100 % массы преобразуется в энергию по уравнению Эйнштейна E = mc2. Такой процесс гораздо эффективнее термоядерного синтеза с участием дейтерия и гелия-3 (которые превращаются в гелий-4 и водород), ведь в последнем случае лишь 0,5 % массы горючего превращается в энергию. Заправившись горючим из вещества и антивещества, корабль такого размера мог бы принять на борт десятерых астронавтов и доставить их на пригодную для обитания планету, до которой не более 40 световых лет. Разгон корабля начинался бы при ускорении 1g (9,8 метра в секунду за секунду, таково ускорение свободного падения у поверхности Земли) в течение первых 4,93 года. Астронавтам было бы комфортно – они могли бы ходить по салону корабля точно как на Земле. Постепенно корабль достиг бы 98 % скорости света. Он шел бы с такой скоростью на протяжении 32,65 года и, наконец, перешел бы в режим торможения на последние 4,93 года (перед этим ракета повернулась бы задом наперед). Астронавты прибыли бы к месту назначения через 42,5 года после старта. Благодаря открытым Эйнштейном релятивистским эффектам (о них Рич подробнее расскажет в главах 17 и 18), при полете на такой высокой субсветовой скорости астронавты состарились бы за время полета всего на 11,1 года, но на Земле за это время минуло бы 42,5 года. Даже если бы на разработку такой вещественно-антивещественной топливной технологии потребовалось еще два века (после запуска первой ядерной ракеты), то корабль на антивеществе все равно обогнал бы ядерную ракету на пути к цели.