Выбрать главу

Рис. 2.21. Полная масса-энергия гравитирующей системы с учетом различной локализации масс.

Вопрос о явных или очевидных временных масштабах очень важен для рассматриваемых нами проблем, и я еще вернусь к нему в гл. 3. Каковы времена распада для реальных систем и какие пространственно-временные суперпозиции этому соответствуют? Считается, например, что время жизни протона (который условно можно считать просто твердым шариком) составляет несколько миллионов лет (оценка представляется весьма разумной, поскольку экспериментально распад одиночных протонов никогда не наблюдался). Для капельки воды время распада может составлять несколько часов (при радиусе ~10-5 см), одну двадцатую секунды (при радиусе ~10-4 см) или одну миллионную долю секунды (при радиусе ~10-3 см). Эти цифры наглядно показывают связь между масштабами и характером физических явлений.

Существует еще одно довольно важное обстоятельство, которое следует упомянуть. Ранее я немного подшучивал над сторонниками подхода FАРР (квантовая механика для всех практических целей), однако в этом подходе содержится и очень важный аспект, а именно: учет окружения, о котором я пока почти ничего не говорил. В реальных ситуациях учет окружения существенно важен для рассматриваемых нами задач. В сущности, мы не имеем права говорить просто «шар здесь» или «шар там», а должны каждый раз говорить о суперпозиции типа «этот шар плюс окружение» или «другой шар плюс его окружение» и т. д. Кроме того, необходимо очень внимательно проверять, связаны ли основные наблюдаемые эффекты с движением именно шаров и других тел или с их окружением. Если какая-то проблема связана с окружением, то наблюдаемый эффект будет случайным, а его описание будет иметь привычный вид. Однако если система достаточно изолированна и ролью окружения можно пренебречь, то в поведении системы, возможно, проявится нечто выходящее за рамки обычной квантовой механики. Было бы очень интересно предложить какие-либо разумные эксперименты этого типа (у меня имеются некоторые идеи на этот счет), которые доказали бы справедливость предлагаемой схемы или, наоборот, продемонстрировали, что привычные квантовые эффекты в этих условиях сохраняются, и мы действительно должны всерьез рассматривать существование суперпозиции состояний таких шаров (или, если угодно, котов).

На рис. 2.22 я попытался обобщить все приведенные выше рассуждения и свести их в некоторую схему. Для этого я расположил различные фундаментальные физические теории в вершинах некоторого абстрактного куба с несколько деформированными гранями (чуть ниже я поясню, что заставило меня использовать такой непривычный художественный прием). Три измерения этого куба соответствуют трем основным физическим константам: гравитационной постоянной G (горизонтальная ось), обратной скорости света с-1 (поперечная ось) и постоянной Дирака-Планка ћ (вертикальная ось, направленная вниз). В привычных нам единицах все упомянутые константы очень малы и их можно приравнять нулю при любых разумных приближениях. При равенстве нулю всех трех констант мы имеем картину мира, которую я называю физикой Галилея (верхний левый угол рисунка). Введение отличной от нуля гравитационной постоянной приводит нас вдоль горизонтальной оси к ньютоновской теории гравитации (геометрическое определение пространства-времени для этой теории было дано позднее Картаном). И наконец, использование неравной нулю величины с-1 приводит нас к специальной теории относительности в формулировке Пуанкаре-Эйнштейна-Минковского. Верхнюю «грань» нашего деформированного куба можно «достроить», считая отличными от нуля оба указанных выше коэффициента, что приводит нас к общей теории относительности Эйнштейна. Однако такое обобщение никак нельзя признать «честным», и поэтому я на рисунке изобразил соответствующую вершину куба несколько деформированной. Считая величину ћ отличной от нуля (но полагая при этом G = с-1 = 0), мы получаем обычную квантовую механику. Используя уже менее ясные варианты обобщения и вводя отличную от нуля величину с-1, мы можем получить квантовую теорию поля и замкнуть левую грань куба (она тоже немного искажена, чтобы подчеркнуть недостаток «прямоты» и ясности используемой методики).

Рис. 2.22.

Мы не можем завершить построение указанного куба и получить общую картину связи различных теорий, так как принципы теории гравитации и квантовой механики существенно противоречат друг другу. Это противоречие проявляется даже в случае ньютоновской теории гравитации (где подразумевается, что с-1 = 0), если мы попытаемся получить соответствующую (картановскую) геометрию, в которой мог бы выполняться эйнштейновский принцип эквивалентности (напомню, что в соответствии с этим принципом постоянные гравитационные поля нельзя получить в ускоренных системах). На это обстоятельство указал мне Джой Кристиан, который также увлекался построениями типа рис. 2.22. Однако пока у нас нет никакой возможности объединения квантовой механики и ньютоновской гравитации (объединения, в котором эйнштейновский принцип эквивалентности будет учитываться совершенно строго, как в классической геометрической теории Картана), вследствие чего, по моему глубокому убеждению, мы должны искать пути такого объединения, пользуясь эффектом редукции квантовых состояний, что соответствует в основных чертах идеям теории OR, о которой я говорил в начале главы. Картина такого объединения пока еще очень туманна, и поэтому передняя грань куба (в отличие от задней!) пока выглядит совершенно бесформенной. Полная теория, в которой все три основные константы (ћ, G и с-1) не равны нулю и которая позволит нам правильно замкнуть грани предлагаемого «куба», должна включать в себя изящные и сложные математические схемы, которые нам еще предстоит разработать.

Глава 3. Физика и разум

Первые две главы были посвящены окружающему нас физическому миру и математическим приемам (иногда поразительно точным, иногда весьма странным), используемым для его описания. В гл. 3 мне хочется рассказать о мысленном мире, мире идей и его связях с физическим миром. Мне кажется, что епископ Беркли должен был бы считать, что физический мир в каком-то смысле возникает из мысленного, в то время как стандартная научная точка зрения сводится к тому, что мышление является всего лишь одной из особенностей некоторых физических структур.

Карл Поппер когда-то ввел в науку представление о так называемом «третьем мире», мире культуры (рис. 3.1). Рассматривая его в качестве продукта мышления, Поппер также предложил некоторую иерархию миров, в которой мысленный мир связан с физическим (возникает в нем?) и культура соответственно каким-то образом возникает из мысленного мира (рис. 3.2).

Рис. 3.1. «Третий мир», предложенный Карлом Поппером.

Рис. 3.2.

Мне хочется взглянуть на эти проблемы с несколько иной точки зрения. Вместо того чтобы считать (вслед за Поппером) культуру порождением мышления, я предпочитаю рассматривать и связывать миры по схеме рис. 3.3, в которой «третий мир» относится не к культуре, а к миру абсолютов, или платоновских идей, т.е. к представлениям некоторых абсолютных математических истин. Такому подходу соответствует приведенный ранее рис. 1.3, отражающий глубокую связь законов физического мира с точными математическими законами.

Рис. 3.3. Три мира и три тайны.

В этой главе речь пойдет в основном об отношениях между указанными мирами. Мне кажется весьма спорной сама идея возникновения мышления из каких-либо физических структур или сущностей (кстати, философы всегда относились к этой идее с недоверием). В физике мы говорим о веществах, предметах, частицах, пространстве, времени, энергии и т. п. Для меня всегда оставалось загадкой, каким образом физика, изучающая эти объекты, может быть связана с обычными человеческими чувствами, например с восприятием красного цвета или ощущением счастья. В сущности, таинственными и непонятными представляются все отношения между тремя мирами, показанные пронумерованными стрелками на рис. 3.3. В первых двух главах я уже говорил о связи математики и физики (Тайна 1), которую когда-то знаменитый Е. Вигнер (см. список литературы) назвал непостижимой, необычной и даже странной (я целиком разделяю эту точку зрения). Действительно, давайте попробуем задуматься о том, почему физический мир столь четко следует некоторым математическим законам? Более того, при этом математика (которая, по предположению, управляет поведением физического мира) является сама по себе исключительно полезной и важной наукой, если рассматривать ее просто в качестве отдельной науки. Эти сложные отношения представляются мне таинственными и глубокими.