Рис. 3.13. При достаточно строгом заполнении пространства-времени световыми конусами могут возникать замкнутые времениподобные мировые линии.
Далее мне хотелось бы обсудить еще один достаточно сложный вопрос. Выше я подчеркивал, что детерминизм и вычислимость представляют собой разные понятия, и это подводит нас к проблеме свободы воли. В классической философии свобода воли всегда рассматривалась в теснейшей связи с детерминизмом. Вы и сами, наверняка, сталкивались с этой проблемой и размышляли о том, насколько наше будущее определяется нашим прошлым и т. п. Мне кажется, что есть масса других более интересных и важных вопросов, например: «Определяется ли наше будущее нашим прошлым вычислимым образом?».
Такие рассуждения связаны со столь многими и разнообразными проблемами, что я могу только упомянуть некоторые из них, не пытаясь даже как-то отвечать. Например, существует вечный спор о том, насколько наши поступки определяются 7нашей наследственностью, а насколько — нашим окружением. Интересно и странно, что в этой связи очень редко рассматривается роль случайных факторов. Ведь мы не можем контролировать все обстоятельства нашего окружения, поэтому, возможно, нам следовало бы задать себе простой вопрос: «Существует ли нечто (возможно, это именно то, что мы именуем Я), которое отличается от окружения и не зависит от посторонних воздействий?». Такая постановка вопроса, кстати, часто используется в обычной юридической практике. Например, проблема прав и обязанностей, безусловно, связана с действиями некоторого независимого субъекта, действительно именуемого «Я». Конечно, эта проблема очень сложна и деликатна. Прежде всего нам следовало бы, конечно, ввести ясные определения понятий детерминизм и недетерминизм. Обычно недетерминизм подразумевает именно наличие случайных факторов или элементов, однако этого явно недостаточно для решения проблемы, поскольку некоторые случайные элементы вполне могут контролироваться. Возможно, в таких случаях следует говорить о невычислимости или даже о невычислимости более высокого уровня. Удивительно, но доводы типа гёделевских оказываются реально применимыми на разных уровнях (даже на том уровне, который Тьюринг называл машиной предсказаний), т. е. они обладают значительно более общим смысловым содержанием, чем это было представлено мною выше. Поэтому следует считать что вопрос о наличии более высоких уровней невычислимости может быть связан с поведением реальной Вселенной или, возможно, с тем понятием, которое мы воспринимаем в качестве нашей свободы воли.
Следующий вопрос относится к уже упомянутому мной «контакту» с миром платоновских идей. В чем, собственно говоря, состоит этот контакт и каков его характер? В сущности, можно указать огромное количество так называемых «миров» с участием невычислимых элементов — судебное дело, здравый смысл, озарение, эстетическое чувство, сострадание, мораль... Мне представляется, что все эти области жизни и сознания характеризуются наличием элементов невычислимости. До сих пор я говорил о мире платоновских идей главным образом в математическом смысле, однако в идеях Платона есть и другая сторона, которую нельзя игнорировать. Абсолютные платоновские идеи ассоциировались не только с истиной, их другими характеристиками выступали добро и красота. Поэтому любой контакт с платоновскими идеями, доступный человеческому разуму и не сводящийся к вычислительным операциям (или вычисляемому поведению), представляется мне чрезвычайно важным.
А теперь давайте задумаемся о работе нашего собственного мозга. На рис. 3.14 представлен небольшой участок мозга, относящийся к очень важной структуре — нейронной системе. Важной частью каждого нейрона является так называемый аксон, представляющий собой очень длинное нервное волокно, которое расщепляется в различных местах на отдельные, более тонкие волокна, которые затем собираются или объединяются в специальных образованиях, называемых синапсами. Синапсы в основном играют роль узлов связи при передаче сигналов между нейронами посредством химических соединений (так называемых нейропередатчиков). Некоторые синапсы по природе являются возбудителями (т. е. поступление в них веществ нейропередатчиков приводит к возбуждению связанных с синапсом нейронов), а другие — ингибиторами, тормозящими передачу сигналов к нейронам. Работу синапса при передаче информационного сигнала от одного нейрона к другому характеризуют параметром, именуемым силой синапса. Если бы все синапсы обладали одинаковой силой, то человеческий мозг действительно очень напоминал бы компьютер. Однако я сразу отмечу, что силы синапсов не являются постоянными величинами, и у специалистов есть множество теорий относительно закономерностей их изменений. В качестве примера можно привести одну из первых гипотез в этой области, механизм Хебба. Проблема заключается в том, что предполагаемые закономерности почти всегда являются вычислительными, и лишь очень редко (практически всегда безуспешно) исследователи пытаются учесть элементы случайности. Задавая какую-либо смешанную, вычислительно-вероятностную теорию изменения сил синапсов, можно моделировать поведение системы нейронов и синапсов на компьютере (напоминаю, что вероятностные элементы поведения моделируются очень легко), в результате чего мы можем получать некоторое описание рассматриваемой системы (типа схемы на рис. 3.15).
Рис. 3.14. Схема работы нейрона, связанного с другими нейронами через синапсы.
Рис. 3.15.
Элементы, обозначенные квадратиками на рис. 3.15 (вы можете считать их, например, транзисторами), способны играть роль нейронов мозга, что позволяет создавать и рассматривать специальные электронные устройства, называемые искусственными нейронными сетями. В таких сетях можно задавать различные правила изменения силы синапсов (обычно это делается для получения более качественных выходных сигналов). Используемые правила всегда носят вычислительный характер, поскольку исследователи вводят их для удобства моделирования на компьютере. Собственно говоря, всю эту ситуацию можно рассматривать в качестве теста (т.е. если вы можете моделировать поведение системы на компьютере, то она является вычислительной), однако применение этого теста носит иногда парадоксальный характер. Например, Джеральд Эдельман предложил учитывать в работе мозга некоторые функции, которые он считал «невычислимыми». Как он учел эти функции? Да очень просто — промоделировал выполнение этих функций на своем компьютере! Но ведь если компьютеру удалось их осуществить, то они относятся к вычислимым!
Мне бы хотелось рассмотреть еще некоторые вопросы, связанные с работой нейронов. Что делают отдельные нейроны? Являются ли они действительно своеобразными вычислительными элементами и т.п.? Следует помнить, что нейроны представляют собой биологические клетки, а биологическая клетка — настолько сложная и развитая структура, что она способна проделывать хитрые трюки даже в одиночку. Например, показанное на рис. 3.16 одноклеточное существо (инфузория-туфелька, парамеция) способно плыть к источнику пищи, убегать от опасности, преодолевать препятствия и даже учиться, т. е. приобретать «жизненный опыт». Наличие таких свойств, конечно, наводит на мысль о нервной системе, но именно нервной системы инфузория точно не имеет. Было бы просто великолепно, если бы, например, инфузории-туфельки и являлись интересующими нас нейронами! К сожалению, никаких нейронов инфузория иметь не может хотя бы потому, что она представляет собой одну-единственную клетку. Мне бы очень хотелось иметь возможность задать всем этим одноклеточным (включая амебу) простой вопрос: «Как вам всё это удается?»