• теория действительных чисел;
• геометрия Евклида;
• математический анализ и теория дифференциальных уравнений;
• геометрия симплексов;
• дифференциальные формы и уравнения в частных производных;
• геометрии Римана и Минковского;
• теория комплексных чисел;
• теория гильбертова пространства;
• теория функциональных интегралов... и т. д.
Одним из наиболее ярких примеров такого рода является, безусловно, дифференциальное и интегральное исчисление, которое Ньютон и ряд других выдающихся математиков разработали в качестве математического основания обширного раздела физики, ныне известного под названием ньютоновской механики. Дальнейшее использование разработанных ими методов для решения различных чисто математических задач оказалось исключительно благотворным для развития самой математики.
В гл. 1 я уже говорил о масштабах физических объектов, измеряемых в пределах от фундаментальных единиц (длина Планка и время Планка, которые столь малы, что для описания даже самой маленькой элементарной частицы нам необходимо увеличивать их в 1020 раз), через размеры и время жизни человека (интересно, что мы, люди, являемся наиболее устойчивыми структурами физического мира), и наконец до возраста и радиуса Вселенной. При этом я особо подчеркивал важность того, что мы используем два совершенно разных метода для описания объектов физического мира, которые лежат на разных концах пространственно-временной шкалы. Как показано на рис. 2.1 (он просто повторяет рис. 1.5 первой лекции), мы используем квантовую механику для описания малых, квантовых уровней активности и классическую механику на уровне крупных объектов. Я обозначу эти уровни через U (унитарность, квантовый уровень) и С (классический уровень) и еще раз хочу подчеркнуть, что мы имеем дело, по-видимому, с совершенно разными законами в зависимости от масштаба изучаемых объектов.
Рис. 2.1.
Мне, как и любому другому физику, представляется очевидным, что если мы правильно понимаем законы квантовой физики, то из нее должны выводиться законы классической физики. Проблема, однако, заключается в том, что на практике мы всегда пользуемся либо классическим, либо квантовым уровнем описания, что, к сожалению, напоминает подход древних греков, для которых было абсолютно естественным наличие в мире двух совершенно различных наборов законов природы, действующих соответственно на Земле и в мире Идей или божественных установлений. Величие и мощь подхода, развитого Галилеем и Ньютоном, заключаются именно в объединении этих двух наборов, позволяющем понимать мир в рамках единой системы физических законов. Похоже, что современная физика вновь возвращает нас к ситуации, когда мы имеем разные наборы законов для классического и квантового уровней описания мира.
Во избежание недоразумения мне бы хотелось сразу оговорить одно обстоятельство, связанное с рис. 2.1. Помещая рядом с именами Ньютона, Максвелла и Эйнштейна слова «классический уровень» или «детерминизм», я вовсе не хочу сказать, будто эти ученые сами верили в детерминизм поведения Вселенной. Мы просто не знаем этого точно, хотя почти с уверенностью можно утверждать, что Ньютон и Максвелл, например, не разделяли этой точки зрения, в то время как Эйнштейн ее поддерживал. Пометки «детерминизм» и «вычислимость» относятся лишь к созданным этими учеными теориям, а не к их личной вере. Точно так же к квантовому уровню добавлены слова «уравнение Шредингера», хотя я не думаю, что сам Шредингер считал свое уравнение пригодным для описания «всей физики». Я еще вернусь к этому вопросу, а пока просто напоминаю читателю, что люди и создаваемые ими теории — вовсе не одно и то же.
Двухуровневая картина на рис. 2.1 сразу вызывает очевидные вопросы: «Развивается ли Вселенная только в соответствии с законами квантовой механики? Можно ли объяснить все поведение Вселенной в рамках квантовой механики?» Прежде чем перейти к их обсуждению, я должен хотя бы очень кратко перечислить те проблемы, которые может описывать и объяснять квантовая механика.
• Стабильность атомов. До появления квантовой механики оставалось совершенно непонятным, почему электроны в атомах не падают по спирали на ядро. В классической физике существование устойчивых атомов запрещено.
• Спектральные линии. Только наличие в атомах квантовых энергетических уровней и переходов между ними позволяет объяснить появление линий излучения, частоты которых мы можем наблюдать и предсказывать совершенно точно.
• Химические силы. Образование и существование молекул обусловлены силами, имеющими принципиально квантово-механический характер.
• Излучение черного тела. Вид спектра абсолютно черного тела может быть объяснен только при условии квантового характера излучения.
• Надежность передачи наследственной информации. Биологические организмы осуществляют эту передачу квантовомеханическим путем на уровне молекул ДНК.
• Лазеры. Действие лазера основано на существовании индивидуальных квантовых переходов между квантовыми уровнями молекул, а также на квантовой природе самого светового излучения (фотоны являются частицами Бозе-Эйнштейна).
• Сверхпроводимость и сверхтекучесть. Эти явления, наблюдаемые при очень низких температурах, связаны с дальнодействующими квантовыми корреляциями (электронов и других частиц) в некоторых веществах.
• ... и т. д., и т. д.
Другими словами, квантовая механика почти вездесуща и давно используется в окружающих нас бытовых приборах и в различных высокотехнологических изделиях (например, в компьютерах). Элементарные частицы описываются квантовой теорией поля (представляющей собой сочетание квантовой механики и специальной теории относительности Эйнштейна), точность которой, как я уже отмечал, доходит до10-11. Разумеется, приведенный список лишь частично отражает огромную роль квантовой механики в современной науке.
Мне хочется рассказать еще кое-что о квантовой механике. Рассмотрим рис. 2.2, на котором представлена схема типичного квантовомеханического эксперимента. В соответствии с квантовой механикой свет состоит из частиц, называемых фотонами. На рисунке показаны соответственно источник s (испускающий отдельные фотоны), экран р (на котором регистрируется попадание фотонов) и расположенная между ними перегородка с двумя щелями t и b. Если бы фотоны были просто отдельными частицами, то попадание каждого фотона на экран можно было регистрировать как отдельное событие. Закрыв одну из щелей, экспериментатор видит на экране некоторое распределение «попадания фотонов», а закрыв другую — некоторое другое распределение. Необычное, квантовое поведение фотонов проявляется, например, в том, что, открыв обе щели, экспериментатор вдруг обнаруживает на экране места, куда фотоны совершенно перестают попадать. По какому-то неожиданному правилу два различных события, в которых фотон мог участвовать, взаимно исключают (гасят) друг друга. Ничего подобно классическая физика не знает, в ней из двух возможных событий происходит либо одно, либо другое. Два варианта развития событий в классике всегда приводят к одному из результатов, варианты не могут «сговориться» и взаимно «исчезнуть».
Рис. 2.2. Эксперимент по рассеянию монохроматических фотонов при использовании перегородки с двумя щелями.
Результаты такого эксперимента могут быть описаны только в рамках квантовой теории, в соответствии с которой фотон по дороге к экрану вовсе не проходит через какую-нибудь одну из двух реально существующих щелей в перегородке. Его состояние описывается таинственной комбинацией из двух соответствующих вероятностей, усредненных по некоторым комплексным числам, т. е. имеет вид