Рис. 2.4. Сфера Римана.
Проекция южного полюса сферы S через точку Р (соответствующую отношению u = z/w на комплексной плоскости) обозначается точкой Р' на сфере. Направление ОР' (от центра сферы O) соответствует ориентации спина при суперпозиции двух частиц со спином ½.
Сфера Римана (пока мы будем рассматривать ее в качестве абстрактного, математического объекта) очень удобна для описания квантовых систем, которые могут находиться в двух разных квантовых состояниях или являться суперпозицией таких состояний. В этом примере мне очень нравится то, что для частиц с половинным спином (а такими являются электроны, протоны, нейтроны) различные комбинации спиновых состояний легко могут быть представлены в геометрическом виде. Частицы с полуцелым спином могут находиться в двух спиновых состояниях (эти состояния соответствуют двум направлениям момента собственного вращения), которые можно назвать просто верхним и нижним состояниями. Суперпозицию двух состояний при этом можно символически записать в виде уравнения
Различные комбинации таких спиновых состояний соответствуют вращениям относительно других осей, положение которых зависит от отношения комплексных чисел w и z, дающего нам еще одно комплексное число u = z/w. Направление спиновой оси определяется прямой, проведенной через центр сферы Римана и точку на сфере, соответствующую числу u, так что комплексные числа в данном случае имеют совершенно конкретный физический смысл. Вообще говоря, уловить этот смысл бывает иногда достаточно трудно, но для частиц с полуцелым спином он очевиден.
Мне хотелось бы обратить ваше внимание на следующее обстоятельство. Конкретная направленность спинов (вверх-вниз) в рассмотренном примере несущественна, и спины в принципе могут быть направлены как угодно (влево-вправо, вперед-назад), т. е. исходное значение двухчастичного состояния не играет никакой роли (исключение составляет выделенное начальное состояние с противоположено направленными спинами). В соответствии с одним из законов квантовой механики все спиновые состояния одинаково удобны для рассмотрения, что и было показано выше.
Квантовая механика представляет собой непростой объект. Эта очень красивая и элегантная теория содержит также много таинственного и является, в сущности, весьма загадочной, обескураживающей и парадоксальной наукой. Мне хотелось бы особо подчеркнуть, что тайны можно довольно четко разделить на два разных класса, которые я буду далее обозначать буквами Z и X.
Термином Z-тайны, или тайны-головоломки (я выбрал для их обозначения букву Z из соответствующего английского слова puZZle), я называю некоторые явления физического мира, а именно, те прекрасные эксперименты, которые наглядно демонстрируют нам загадочное поведение квантовых объектов. Некоторые из этих явлений даже не изучены до конца, но они не оставляют сомнений в правильности квантовой механики. В частности, к Z-тайнам можно отнести корпускулярно-волновой дуализм, уже упоминавшийся спин, а также нуль-измерение и нелокальные эффекты, о которых я расскажу позднее. Эти явления действительно загадочны и непонятны, но почти никто не отрицает их реальность — они являются частью окружающего нас мира.
Существуют, однако, проблемы совсем другого типа, которые можно назвать тайнами-парадоксами или Х-тайнами (от последней буквы в слове paradoX). На мой взгляд, их существование наглядно показывает нам, что разработанная теория не является полной или даже в чем-то ошибочна, т. е. нуждается в существенной дальнейшей доработке. Наиболее важной Х-тайной является так называемая проблема измерения, о которой я уже упоминал. Она заключается в том, что при переходе R (от квантового уровня к классическому) правила изменяются. Пока нам неясно даже то, станет ли природа операции R понятнее при глубоком понимании поведения более сложных и больших квантовых систем (т. е. возникает ли она из-за некоторой приблизительности нашего подхода или является вообще иллюзорной). Наиболее известным вариантом X-тайны выступает знаменитый парадокс, связанный с котом Шредингера. В этом эксперименте (разумеется, мысленном, поскольку сам Шредингер был весьма гуманным человеком) несчастный кот находится в странном (полуживом-полумертвом) состоянии. Разумеется, вы не встретите таких котов в реальности, но связанная с этим задача имеет глубокий смысл, и я расскажу о ней подробнее ниже.
Я считаю, что мы вполне можем «ужиться» с Z-тайнами, однако X-тайны не дают нам возможность создать достаточно серьезную физическую теорию (я подчеркиваю, что это мой подход к проблеме). Есть много других точек зрения на существующие (или кажущиеся?) парадоксы квантовой механики или (как мне иногда кажется) много разных подходов к точкам зрения!
Мне бы хотелось еще немного рассказать о Z-тайнах, а затем перейти к обсуждению более серьезных проблем, связанных с Х-тайнами. Я попробую описать две наиболее известные проблемы, связанные с Z-тайнами. Первая из них относится к квантовой нелокальности или, как предпочитают говорить некоторые физики, квантовой запутанности (иногда ее называют взаимосвязанностью или переплетенностью). Идея этого весьма необычного эффекта была выдвинута Эйнштейном, Подольским и Розеном, вследствие чего его часто называют просто ЭПР-парадоксом или ЭПР-экспериментом. Простейший вариант этого эксперимента был предложен Дэвидом Бомом и выглядит следующим образом. Предположим, что частица со спином 0 распадается на две частицы со спином ½ (например, на электрон и позитрон), которые разлетаются в противоположных направлениях. Затем в какой-то момент времени экспериментатор измеряет значения спинов этих частиц, когда они уже находятся в весьма удаленных друг от друга точках A и В.
Существует знаменитая теорема Джона Белла, которая утверждает, что смешанная вероятность, соответствующая результатам измерений в точках A и В (и любой другой «локально-реалистической» модели), будет противоречить предсказаниям квантовой механики. Под «локально-реалистической» моделью я подразумеваю любую модель, в которой электрон и позитрон (находящиеся в разных точках А и В) соответствуют двум различным и разделенным объектам, т. е. никак не связаны друг с другом. Джон Белл весьма убедительно показал, что смешанные вероятности после измерения будут противоречить квантовой теории. Это обстоятельство является весьма важным, поскольку результаты дальнейших экспериментов (проведенных, например, в Париже Аленом Аспектом) действительно соответствовали квантовомеханическим предсказаниям. В этом эксперименте (схема которого показана на рис. 2.5) измерялись поляризационные состояния двух фотонов, вылетающих в противоположных направлениях из одного источника.
Рис. 2.5.
а — частица со спином 0 распадается на две частицы со спином ½, например, на электрон Е и позитрон Р. Измерение спина одной из этих частиц, очевидно, приводит к мгновенной фиксации точного значения второй частицы; б — эксперимент группы Алена Аспекта. Два противоположно направленных фотона испускаются источником в запутанном состоянии. Решение о том, поляризацию какого из фотонов следует измерить, принимается только тогда, когда они уже удалены друг от друга на значительное расстояние, не позволяющее никаким образом передать информацию о результате измерения.