А изготовленная в Далласе матрица из двух миллионов микронных зеркал, отклоняющих световой луч по заданной программе, имеет все шансы стать основой нового телевидения с экраном любого размера и яркости.
Комбинация же микродатчиков, «чувствующих» ускорение в одну миллионную долю земного, атмосферное давление, температуру, влажность и состав воздуха дает человеку прибор размером в обычные наручные часы, который покажет точнейшее географическое положение, экологическую чистоту атмосферы и предскажет будущую погоду.
Миниатюрность современных изделий микромеханики, как уже говорилось, поразила бы даже выдающихся умельцев блошиного периода. Но возможности еще более значительного уменьшения этих изделий далеко не исчерпаны.
Однако, микромеханика, считают ученые, пойдет вглубь не простым масштабным сокращением. Нельзя, утверждают они, сократить слона до мухи (как и наоборот), такой объект будет нежизнеспособен. И обычные механизмы — двигатели, турбины, насосы — нерационально уменьшать до молекулярных размеров. Тут нужны новые идеи, новые конструкции — возможно те, что созданы микромиром живой природы.
А также новые технологии, которые позволят создавать элементы микромеханики сразу в громадном количестве, причем агрегатированными — то есть собранными в один функциональный узел — и интегрированными на одном кристалле. Такие технологии, как, например, фотолитография с использованием рентгеновского излучения синхрофазотрона. Она прекрасно себя показала при создании интегральных схем микроэлектроники, она станет, похоже, базой развития микромеханики. На одном кристалле можно будет вырастить целую лабораторию, цех и фабрику. И, хотя «станки», насосы и турбины этих фабрик будут меньше пылинки, суммарная продукция их станет вполне ощутима.
Эксперимент показал, что миллион микронасосов, выращенных на одном кристалле, перекачивает за минуту почти литр воды!
Вероятно, микромеханика пойдет по тому же пути, что и электроника, которая в свое время от отдельных макродеталей: резисторов, ламп, катушек и конденсаторов, «доросла» до микроэлементов, интегрированных на одном кристалле. Путь известный, накатанный, а потому несравнимо более короткий, чем пятидесятилетний путь, который прошла микроэлектроника.
Человек приручил электричество намного позже, чем механику. Более трех миллионов лет он применял очень примитивную механику — палку, копье, нож, лук. Но и человек разумный за пятидесятитысячелетний срок только в последние лет триста разобрался с электричеством. И за это мгновение кардинально преобразил свою жизнь.
Теперь очередь механики дать землянам поразительные результаты. Надо думать, что она не остановится на ближайшем этапе — микромеханике, а стремительно начнет осваивать новую область — наномеханику. Ее преимущества видны уже сегодня.
Предел применению изделий механики — станков, оружия, транспорта — обычно ставила инерционность. Максимальная частота механических перемещений достигала десятков, в лучшем случае сотен колебаний в секунду.
Но с уменьшением масс на 20–25 порядков эта частота резко растет, и в наношкале механические элементы объемом не более одной стомиллионной доли кубического микрона выполняют до 1010 инструкций в секунду.
Если удастся решить проблему теплоотвода в таких системах (около 1 вт), то быстродействие подскочит до 1016 инструкций в секунду.
Компьютер из элементов такой наномеханики (чей прообраз советский арифмометр «железный Феликс») составит серьезнейшую конкуренцию электронному компьютеру.
О давней мечте Староса
Трудно сказать — чей суперкомпьютер окажется совершеннее — у наноэлектроники или наномеханики. Вполне возможно, что будет синтез того и другого.
Но совершенно точно, что «сожительство этих двух составляющих нанотехнологии даст совершенно необычных помощников человеку — микророботов. Или, как автору хотелось бы их назвать, нанороботов.
Действительно, микропроцессор в один микрон или менее, станет компьютерным «мозгом» наноробота, а исполнительные механизмы ему даст наномеханика. Управляться он будет заложенной в нем программой или по радиосигналам извне. Впрочем, возможно комбинированное управление.