Выбрать главу

Для получения больших скоростей нужны большие скорости и приводов — двигателей, дающих жизнь машинам.

Высокоскоростной привод нужен станкам и центрифугам, ручному инструменту и приборам. Он нужен и на электростанции, чтобы вращать генератор, и на самолете, чтобы вращать воздушный винт и питать воздухом двигатель. Такие приводы появились в последние годы. Немало трудностей побеждено, чтобы их создать. Немало трудностей еще впереди.

Создание высокоскоростных машин требует решения новых задач, которых не возникало раньше. Новая техника требует и нового подъема науки. И этот подъем налицо.

Большие скорости — это более высокие требования к производству.

Для изготовления быстроходных машин нужна новая технология, большая точность, большие знания, подъем культуры производства.

Новая техника требует людей, в совершенстве владеющих ею.

И такие люди есть у нас. Их воспитала партия. Их воспитал Сталин.

РОЖДЕНИЕ МАТЕРИАЛА

Бумага, говорят, все стерпит! На бумаге любую машину построишь.

Как-то раз видел я человека, который строил на бумаге машины. Рисовал он на листочках необыкновенные сверхскоростные самолеты, сверхглубоководные подводные лодки, фантастические межпланетные корабли, машины чудовищных скоростей…

Тщательно вычерченный и разрисованный цветными карандашами, этот сказочный мир машин не похож был на сказку. Казалось, стоит только воплотить его в металл — и он оживет. Помчатся, как метеоры, самолеты и ракеты, с неслыханной скоростью завертятся станки и турбины, на дно океана отправятся «Наутилусы» наших дней…

Человека, о котором я рассказал, я не выдумал. Он сидел рядом со мной в читальном зале библиотеки и строил свой бумажный мир машин. Наверное, это был художник, придумывавший иллюстрации к какому-нибудь научно-фантастическому роману.

Автор такого романа обязательно расскажет в нем о «новом сплаве огромной прочности», который инженеры будущего создали для новых чудесных машин. И он будет прав. Новые машины, машины больших, скоростей, — это и новые металлы.

Не только машины из фантастического романа, а и машины инженера-проектировщика останутся на бумаге, если не из чего будет их построить.

В истории техники подобные случаи бывали. Почти полтораста лет назад изобрели новый двигатель — газовую турбину. Вот его идея: струя горячего газа вращает турбинное колесо с лопатками. Простой задуман был двигатель: ни цилиндров с поршнями, ни шатунов с кривошипами, ни парового котла. И быстроходный в то же время, потому что в нем одно только движение — (вращение.

Однако прошло целых сто лет, прежде чем построили первую такую турбину. И еще около полувека потребовалось, чтобы поставить ее на ноги, сделать полноправным двигателем в технике.

Почему же так много времени пошло на это?

Одна причина в том, что такой двигатель не сразу понадобился. Пока старые двигатели хорошо служат, пока нет нужды в новых, они и не появляются. Но была и другая важная причина: если бы даже и захотели, не из чего было бы построить новый двигатель. Для него нужны новые материалы — прочные и в то же время жаростойкие, чтобы выдержать большие нагрузки при высокой температуре.

А ведь даже всего полвека назад выбор у инженера был невелик: чугун, железо да обыкновенная сталь. Инженер сегодняшнего дня из них; мало что смог бы построить: для наших современных быстроходных машин эти материалы не годятся.

Почему? Чтобы на это ответить, нужно вспомнить о прочности.

Что такое прочность? И как ее оценить, как узнать, насколько прочен металл?

Дело, казалось бы, нехитрое. Веревка рвется, если ее с большой силой потянуть за концы.

На каждый квадратный сантиметр сечения веревки, когда ее растягивают, действует определенная сила — напряжение. Оно все возрастает, и наступает момент, когда внешние растягивающие силы становятся больше сил внутренних, сил сцепления молекул между собой. Веревка разрывается. Напряжение стало больше допустимого — того, которое материал еще выдерживает, не разрушаясь.

Нагрузки, которые приходится испытывать деталям машин, разнообразны: это и растяжение, и изгиб, и кручение, и сжатие. Все они вызывают напряжения в металле.

Можно рассчитать, какими будут эти напряжения. Но как узнать, выдержит ли их металл?

Здесь слово предоставляется теоретическим расчетам, которые проверяются опытом. Образец из металла укрепляется в зажимах испытательной машины. Растет напряжение. Сначала металл стойко сопротивляется нагрузке. Металлический стерженек слегка удлиняется, он как бы поддается силе, но еще крепка — связь между его частичками, еще велики внутренние силы. Потом металл перестает удлиняться, хотя нагрузка растет. В металле идут невидимые глазом процессы. И вдруг в одном месте, примерно в середине, он начинает утончаться и сразу рвется.