Выбрать главу

И вместе они помогают решать одну задачу: создать нужный для нашей машины материал.

Теперь еще раз вопрос: всё? Нет. Одним лишь усложнением состава задачу полностью не решишь. Здесь приходит на помощь другой способ управления сплавом, его свойствами.

Способ этот — тепловая обработка. Он так же стар, как и сами металлы.

Закаливать металл умели очень давно. Закаленный металл — уже другой металл, с другими свойствами. До закалки он мягок, после — тверд и хрупок.

Тепловая обработка, нагрев и охлаждение — могучее средство управлять металлом. Раньше здесь шли вслепую. Русские металлурги, проникшие во внутренний мир металла, разгадали его тайны. Знание дало возможность выбирать правильный путь, в подлинном смысле слова управлять металлом.

Закаленный — нагретый и быстро охлажденный — клинок срубает молодое деревцо. Тем же клинком, если его нагреть и медленно охладить, нельзя срубить и прутик.

В чем же здесь секрет?

Металлы состоят из кристаллов — зерен. «Кирпичики» — кристаллы, оказывается, могут менять свою форму при нагреве или охлаждении. Меняются при этом и свойства металла.

Конечно, на деле не все обстоит так просто, как мы сказали, но основа, суть такова.

В технике, однако, редко пользуются чистыми металлами. Их соединение, сплав — вот с чем обычно имеет дело инженер.

Когда рождается сплав, происходят сложнейшие превращения.

Бывает, что атомы металлов соединяются, образуя химические соединения. Эти соединения могут «цементировать» весь сплав, делать его прочным. Прочная основа служит в нем как бы скелетом.

Разными добавками, разной тепловой обработкой можно получить и разное внутреннее строение сплава, разные его свойства.

Известно, например, что хром стоек к окислению. При окислении сначала на нем получается тончайшая пленка из окисла. Это «самозащита» металла. Он сам предохраняет себя от разрушения — дальше окисление не идет. Вводя в сплав хром, мы повысим стойкость сплава. Вот почему хром есть во всех марках нержавеющей стали.

Вольфрам в железных сплавах соединяется с углеродом. Химические соединения углерода и вольфрама — карбиды— придают сплаву высокую твердость. Вот почему вольфрам мы встретим в инструментальной стали, где твердость — первое требование. Ведь резцами из такой стали режут металлы.

Разве неудивительны эти, идущие по воле человека, превращения металлов? Чистых металлов известно около 70. А наша техника применяет несколько сот марок сплавов с самыми различными свойствами.

Легирующие примеси в высококачественных марках стали.

Можно выдумать сплавы почти невесомые, всплывающие в воздухе, как пробка в воде, и сплавы, в десятки тысяч раз тяжелее стали. Это, конечно, фантазия писателей.

Но если бы лет пятнадцать назад вы сказали металлургу, что можно создать сплав, работающий сотни часов при температуре красного каления, — он наверняка счел бы вас фантазером.

Инженеры, создававшие такой сплав, знали по опыту, что столько-то процентов никеля обеспечат высокую прочность, а столько-то молибдена — стойкость к высоким температурам.

Они знали, что добавка хрома и кремния даст защиту против окисления и при низких и при высоких температурах. Им известно было и то, что для лучшей свариваемости и ковкости желательно иметь в сплаве немного углерода.

И они подобрали состав сплава. Но это было лишь началом работы.

В лабораторной печи сделали пару опытных плавок. Прочность при высокой температуре получилась выше, чем у других сплавов.

Однако ковать и прокатывать новый сплав оказалось очень трудно. Мешала слишком большая его твердость.

Куда же годится материал, который нельзя обработать! Инженеры стали тщательно изучать все свойства нового сплава.

Его испытывали при нагрузках, которые придется выдерживать в настоящей турбине. В специальных машинах подвергали образец «пыткам»: растягивали, изгибали, выкручивали на все лады. Смотрели, как материал ведет себя при длительной работе — много часов подряд. Ведь турбина на электростанции должна проработать непрерывно 100 тысяч часов — одиннадцать с половиной лет!

Конечно, испытывать образец 11 лет — дело немыслимое, но все же инженеры заставили металл сдавать экзамен подолгу, чтобы судить, как он поведет себя при еще более длительной работе.

Нельзя добиться того, чтобы материал совсем не менял своих свойств. Но можно и нужно добиваться того, чтобы изменения эти были медленными, незаметными, не мешающими работе машин.