А только просто ли это сделать? От изменения состава сплав может измениться так, что его и не узнаешь.
Большие и сложные исследования ведут металловеды, создавая новые сплавы. Это, пожалуй, звучит очень скромно и неопределенно. Но как же все-таки может быть велика эта «большая» работа?
Предположим, что мы захотели бы испробовать все возможные сочетания из двух, трех, четырех и так далее элементов, скажем, до десяти. А в каждом из таких сочетаний мы изменяли бы содержание составных его частей, допустим, 10 раз.
Сколько нужно было бы изготовить образцов? Оказывается, так много, что на испытания их не хватило бы человеческой жизни.
Итак, «большая» работа оказывается бесконечной, а значит, и неосуществимой.
И у нас нет никакой надежды не только довести ее до конца, но и хоть сколько-нибудь заметно продвинуться вперед. Исключается всякая возможность плана, системы. Их заменяет случай.
Долгие годы нужны для того, чтобы изучить, перепробовать хотя бы сплавы всего из двух металлов — двойные. Века нужны, чтобы создать и испытать тройные и четверные сплавы. Чтобы испытать все сплавы из 10 элементов, понадобилось бы столько образцов, что для них не хватило бы массы металлов размерами с земной шар.
Но нельзя ли ускорить эту работу?
Советская наука ответила: можно!
Профессор С. А. Векшинский разработал совершенно новый способ исследования структуры и свойств сплавов.
Мы можем с вами оценить значение способа Векшинского, зная о тех действительно непреодолимых препятствиях, которые стояли перед металловедами.
Нет возможности описать во всех подробностях эту работу. Но суть ее понять нетрудно.
Твердым и жидким металлом наука занималась давно. А вот тот же металл, но в виде газа, точнее пара, выпал из поля зрения металловедов. В этом же оказался ключ решения задачи, которой занялся Векшинский.
Давно известно, что при нагревании металл испаряется. Все быстрее и быстрее двигаются тогда атомы металла. И часть из них уже может преодолеть силы притяжения соседей, оторваться и улететь.
В воздухе, конечно, такой вырвавшийся с поверхности металла атом далеко не улетит. Его «затолкают» встречные молекулы воздуха, он быстро потеряет свою скорость. А если бы могли увидеть его путь при этом, то заметили бы причудливую ломаную линию. Едва он успевает поворачиваться под ударами встречных молекул.
Другое дело — в пустоте. «Пустота», конечно, дело относительное. Но все же наши машины глубокого вакуума, пустоты, создают разрежение до одной тысячемиллиардной доли атмосферы. По сравнению с плотным воздухом у поверхности Земли это действительно пустота.
И вот там-то атомы испаренного металла полетят без помех прямым пучком.
Пусть такой пучок встретит на пути стеклянную пластинку. Тогда, подобно муке, которая, высыпаясь из пакета на стол, ляжет горкой, осядут горкой и атомы на пластинке. Слой атомов металла на пластинке будет неодинаковой толщины: чем дальше от вершины «горки», тем тоньше.
А теперь пусть не один, а два или три пучка от разных металлов направляются к пластинке. Атомы перемешаются, и на ней осядут слои — «горки» из разных атомов.
В разных местах пластинки будут и разные по составу слои. В одном месте будет больше, скажем, никеля, меньше хрома, где-то в другом — наоборот.
На пластинке исследователь получит всю гамму сочетаний составных частей, всевозможные их комбинации. Этого можно достигнуть, и это сделал Векшинский.
Но ведь тогда на стеклянной пластинке откроется перед нами сплав во всем его многообразии. На маленькой пластинке мы увидим большой мир — тысячи разных сплавов, стоит только перейти из одного места пластинки в другое. Передвигаясь по пластинке, мы сразу встретим всю гамму сплавов, которые нужно было бы создавать годами упорного труда.
Но разве слой из атомов разных металлов может заменить настоящий сплав?
Разве сплав на пластинке испытаешь так, как испытывают настоящий сплав?
Оказывается, тончайшие слои на стеклянной пластинке могут заменить исследователю настоящий сплав. Оказывается, можно с помощью специальной аппаратуры испытывать и определять некоторые их свойства.
В экспресс-лаборатории спектрального анализа.
Пользуясь способом Векшинского, можно предсказывать, как поведет себя сплав, как будут действовать на него различные газы, пары, жидкости при различных температурах и давлениях. Можно, например, наблюдать, насколько стоек сплав к такому своему врагу, как коррозия, и помогать бороться с нею. Можно легко увидеть, что происходит с тонким слоем сплава при нагреве, при пропускании тока, при взаимодействии не только металла с металлом, но и с химическими соединениями, иначе говоря, в миниатюре изучать то, что бывает в жизни со сплавом.