Но стоит только снять нагрузку, исчезает и рисунок. Ею можно сохранить, «заморозив» напряжения. Это не литературное, а чисто техническое выражение. Их «замораживают», но не холодом, а… теплом. Модель тогда делают из каркаса и заполнителя.
Каркас — «скелет» — тугоплавкий, при нагреве не плавится, но меняет форму под нагрузкой.
Внутри же «скелета» материал плавится и заполняет эту своеобразную форму. Застыв, он сохраняет те изменения, которые произошли с каркасом. Теперь можно охладить модель, и жидкий материал затвердеет. Остается только, остановив вращение модели, призвать на помощь оптические приборы, и застывший рисунок предстанет перед ними, как моментальная фотография.
А вот другой способ.
Напряжения вызывают перемещения частиц материала: деталь растягивается, изгибается, скручивается. Эти перемещения, или, как говорят, деформации, не произвольны, а связаны между собой. Зная деформации, можно определить и напряжения.
Как же определить деформации?
Тут приходится искать обходные пути. Ведь перемещения настолько малы, что глазом их заметить и измерить, да еще в быстродвижущейся детали, невозможно.
Но надо все же эти ничтожные изменения уловить, а затем их можно будет усилить, сделать заметными, и по ним уже судить о напряжениях.
Деталь покрывают особым лаком. Когда деталь работает, появляются деформации и лак растрескивается. Опасные места, где сильнее всего деформируется деталь, где напряжения максимальны и выдают себя трещинками.
На детали в разных местах приклеивают особым клеем кусочки тонкой бумаги. К бумажкам, в свою очередь, приклеены тончайшие проволочки. Через них идет ток.
Когда деталь деформируется, с ней вместе, повторяя все ее движения, вытягивается или сжимается и проволочка. Ее длина меняется, а поэтому меняется и сопротивление идущему по ней току. Эти еле заметные изменения усиливаются усилителем. По ним можно судить о напряжениях.
Так деталь «докладывает» исследователю о своей работе.
Можно заставить отчитываться и целую машину.
Так делают, например, в авиационной технике — при испытании самолетов.
Модель самолета помещают в трубу, где искусственно создается воздушный поток. При этом, как и при всяком испытании модели, пользуются подобием явлений: по поведению модели можно, применяя расчеты, судить и о работе большой машины.
На модели самолета, помещенной в воздушный поток, изучают, как будет работать настоящий самолет, какие будут действовать на него в полете силы. Зная эти силы, можно рассчитать самолет на прочность. Затем в лаборатории прочности испытывают под нагрузкой и отдельные детали и весь самолет. Он, этот опытный самолет, еще не поднимаясь в воздух, обречен на гибель. Но гибель его не напрасна: теперь конструкторы знают все опасные места, а зная врага, легче с ним бороться.
Но вернемся к материалам для быстроходных машин. Какие еще неожиданности таят они для конструктора?
Вот несколько любопытных примеров. Оказывается, сплавы повышенной прочности обладают повышенной чувствительностью к резким изменениям формы детали. Какая-нибудь выточка, канавка или переход от одного диаметра к другому — все это вызывает увеличение напряжений в этих местах, а значит, и опасность разрушения.
Но ведь сложная форма детали с такими «опасными» местами — не прихоть конструктора, не произвол.
Как же быть? Образец из нового, высокой прочности сплава сдаст экзамен на «отлично». А за сделанную из того же самого сплава деталь сложной формы ручаться нельзя.
«Где тонко, там и рвется», — говорит пословица. И бывали случаи, когда в таком «тонком», опасном месте и рвались валы турбин, разлетались на куски быстроходные электромоторы и центрифуги.
Теперь, пожалуй, не покажется преувеличением утверждение ученых, что ответ на вопрос, почему отличаются по прочности образец металла и деталь из него, — это одна из важнейших задач современной техники, техники больших скоростей, давлений, температур, требующей высокопрочных материалов.
Намечаются и используются пути борьбы с вредными «скоплениями» напряжений.
Конструкторы так проектируют машину, чтобы не было резких переходов — от большей толщины к меньшей, от одной формы к другой. Плавные переходы вместо резких, закругленные формы вместо острых. Избегать скопления, концентрации напряжений — таков девиз конструктора.