Выбрать главу

Грандиозность замысла как бы предопределила невозможность его реализации в полной мере. Одна только проблема пространство — время в приложении к геологическим объектам почти не разработана, а тут она должна быть не только осмыслена, определена, но и должна объединить пестрый конгломерат идей, фактов, мнений. Да и мыслимо ли создать теоретическую модель взаимодействия столь сложных объектов и явлений, исследуемых целыми комплексами наук — геологических, географических, биологических. Не исключено, что такая модель вообще недостижима на современном уровне знаний из-за слишком большого числа причудливо переплетенных факторов, которые определяют жизнь планеты, взаимосвязанных геосфер и т. д.

В науке ценится не только решение проблем, но и их постановка. Открыть новую интересную перспективную проблему бывает подчас труднее, чем решить ее. Все дело только в том, чтобы она не была мнимой, т. е. чтобы отражала реальность, предоставляла возможность проверок и уточнений с помощью экспериментов, на фактическом материале. Этим условиям вполне удовлетворял научный подход Б. Л. Личкова к астрогеологическим проблемам. Следовательно, сама по себе цостановка подобной грандиозной задачи синтеза знаний о Земле и жизни — выдающееся достижение Личкова.

Общий ход его рассуждений был примерно такой. Астероиды имеют угловатую форму. Планеты округлы. Форма сравнительно небольших тел определяется электромагнитными силами .взаимодействия атомов, молекул, ионов. Скажем, так называемые кристаллические решетки слагаются ионами, которые находятся на определенных расстояниях друг от друга.

Если кристалл будет увеличиваться, то пропорционально его объему (массе) возрастут гравитационные силы. Электромагнитные взаимодействия практически не зависят от увеличения массы вещества. Поэтому наступит момент, когда гравитационные силы их превзойдут. Гигантский кристалл, увеличиваясь, станет расплываться. Гравитация будет стремиться превратить его в шар, а электромагнитные силы будут по возможности сохранять кристаллическую решетку. Борьба этих двух сил и определяет форму космического тела. Перейдя некоторый предел массы, астероид превращается в округлую планету.

Итак, шарообразная форма Земли — проявление великого закона всемирного тяготения. Однако на этой форме заметно сказываются инерционные силы, возникающие при вращении планеты. Если форма Земли в первом приближении — шар, то во втором приближении — двухосный эллипсоид вращения. Даже незначительными изменениями скорости вращения планеты порождаются могучие инерционные силы, искажающие форму идеального эллипсоида. Согласно геометрическим закономерностям наибольшие искажения должны наблюдаться по оси вращения (на полюсах), на 62-х параллелях и на экваторе, а наименьшие — на 35-х параллелях.

Подчиняться этой закономерности должны все три оболочки планеты: твердая (литосфера), жидкая (гидросфера), газовая (атмосфера). Не случайно по обе стороны 35-х параллелей располагаются наиболее беспокойные, динамичные "ревущие широты" океана и атмосферы.

...Личков не ограничивается непосредственным изложением своих выводов. Он мастерски прослеживает эволюцию идей, ссылается на множество авторов и работ (частично забытых), как бы восстанавливая живой поток мысли, ведущий к его теории.

"К истории науки,—поясняет он,—приходится обращаться не только для того, чтобы восстанавливать то, что когда-то в ней уже было, и этим устанавливать связь настоящего с прошлым, но также нередко и для того, чтобы найти путь в будущее: брошенные решения иной раз оказываются такими, к которым науке приходится возвращаться иногда в старом, а иногда и совсем в новом аспекте, и поэтому, не зная истории, мы нередко отрезаем пути понимания движения науки вперед, в будущее.

В истории науки мы на каждом шагу видим замену в некоторые моменты точного и истинного ложным и неправильным. Только полное знание истории может помочь найти в прошлом то, что истинно, и отграничить его от того, что ложно. Зная это, мы можем истинное ввести в науку будущего и подойти к новому. Именно в этом смысле история науки, как сказал Вернадский, является орудием достижения нового" [128].

В своей книге Личков много уделял внимания истокам современных глобальных геологических концепций, делая это на высоком профессиональном уровне. Мысль, высказанная в приведенной выше цитате, подтверждалась им на конкретных примерах. Личков стремился понять, почему обрели широкую популярность одни геологические идеи, а другие долгие годы оставались в забвении. И одновременно показывал, насколько живучи концепции, казалось бы отброшенные наукой. Он, в частности, . предсказывал неизбежное возрождение гипотезы перемещения материков и, как сейчас очевидно, оказался прав. Он вновь выдвинул на первый план глобальную закономерность: существование полушарий преимущественно континентального и преимущественно океанического. Он подчеркивал своеобразие строения и истории земной коры континентальной и океанической, предполагая, что аналогичное явление может наблюдаться в подкорковых горизонтах. И в этом он оказался прав: современная геофизика доказала существенные различия верхней мантии под океанами и под континентами. Между прочим, существование таких различий говорит не в пользу глобальной тектоники плит. Возможно, что со временем появится тектоническая теория, возрождающая — на новом уровне знаний — гипотезу Вегенера или ее разновидности.

Еще одна актуальная концепция Личкова: .крупномасштабные тектонические процессы определяются не тепловыми, а гравитационными силами. Правда, и поныне остаются популярными гипотезы, связывающие крупные движения земной коры и гипотетические (!) конвективные круговороты очень плотного мантийного вещества с термикой глубоких недр планеты. Однако имеется одно новое, очень веское свидетельство в пользу концепции Личкова: примерное равенство тепловых потоков на континентах и в океанах. Если бы главные отличия континентальной и океанической земной коры определялись в конечном счете аномалиями теплового поля планеты, то не было бы наблюдаемого равенства тепловых потоков.

Линков не удовлетворился подобными выводами и прогнозами, попытавшись найти объяснение не только некоторым глобальным пространственным закономерностям, но и временным. Чем вызваны геологические циклы горообразования? Почему в истории Земли периодически повторялись эпохи повышенной тектонической активности? Почему наблюдались периодические массовые вымирания и расцветы видов растений и животных?

Ход его рассуждений был логичен и прост. Если преимущественно гравитационные силы определяют структуру пространства литосферы, то их изменения должны вызывать перестройки этой структуры со всеми вытекающими отсюда последствиями, включая и видоизменения живого вещества. Земное гравитационное поле может меняться под действием ротационных сил, при ускорении или замедлении вращения Земли. Но что могло вызвать подобные колебания скорости вращения? В поисках ответа на этот вопрос пришлось обратиться к данным астрономии.

Как известно, наша Галактика вращается. Время ее полного оборота вокруг центрального "ядра" составляет, по некоторым оценкам, 150—200 млн. лет. Яичков принимает первую цифру. По его подсчетам, длительность полных геологических циклов 60—70 млн. лет: 10—15 млн. лет повышенной тектонической активности — "критическая", "революционная", "диастрофическая" фаза —и 55 млн. лет более спокойного, "эволюционного" развития. Всего таких циклов за последние 4,6 млрд, лет было шесть; в одном галактическом году было по два цикла.

Личков делает вывод: геологические циклы вызваны гравитационными воздействиями на Землю (Солнечную систему) в процессе вращения Галактики: два цикла, два гравитационных "удара" за один галактический год. Гравитационные космические аномалии воздействуют прежде всего на фигуру Земли. Перестройка ее идет зонально. В результате возникают зоны активного горообразования. Появляются на континентах мощные ледники. Обилие вод на суше сопровождается уменьшением количества воды в Мировом океане, с падением тектонической активности тают ледниковые щиты, уменьшается общая увлажненность материков, деградируют почвы, возникают и растут пустыни.