Есть искушение попытаться представить себе, как выглядят эти ориентации на самом деле, однако не стоит ему поддаваться. При этом их эффекты вполне реальны. Спин определяет величину момента импульса у электрона – момента, связанного с «вращательным» движением спина. Спин также управляет взаимодействием электрона с магнитным полем. Эти эффекты можно досконально исследовать в лаборатории. Но, говоря о квантовой механике, такое впечатление, что мы перешагнули грань между тем, что можно узнать о происхождении этих эффектов, и тем, чего нельзя.
Релятивистская квантовая теория электрона Дирака также дала вдвое больше решений, чем, по его мнению, было нужно. Два решения соответствуют двум ориентациям электронных спинов. Чему же соответствуют два «лишних» решения? У Дирака были кое-какие свои идеи, но в конце концов в 1931 году он был вынужден признать, что они представляют ориентации спина вверх и вниз неизвестного до тех пор положительно заряженного электрона. Дирак открыл антивещество. Античастица электрона, названная позитроном, впоследствии была обнаружена в экспериментах с космическими лучами, так как она образуется в околоземном пространстве при столкновениях высокоэнергетических частиц.
В 1932 году нашелся, как казалось, последний кусочек головоломки. Английский физик Джеймс Чедвик открыл нейтрон, электрически нейтральную частицу, которая уютно расположилась рядом с положительно заряженным протоном внутри атомного ядра. Физики как будто получили все нужные ингредиенты, чтобы сформулировать четкий ответ на вопрос, поставленный в начале главы.
Ответ вышел примерно таким. Все вещество в мире состоит из химических элементов. Химические элементы встречаются в природе в самых разнообразных видах и составляют периодическую таблицу от самого легкого – водорода – до самого тяжелого из известных природных элементов – урана[4].
Все элементы состоят из атомов. Все атомы имеют ядра, состоящие из разного количества положительно заряженных протонов и электрически нейтральных нейтронов. Свойства каждого элемента определяются количеством протонов в ядре его атома. У водорода один протон, у гелия два, у лития три, и так далее вплоть до урана, у которого их девяносто два.
Ядро окружают отрицательно заряженные электроны в количестве соответствующем числу протонов, таким образом, что в итоге атом остается электрически нейтрален. Каждый электрон может иметь ориентацию либо вверх, либо вниз, и каждую орбиталь могут занимать два электрона при условии, что они спаренные.
Ответ очень обстоятельный. Имея элементарные составные части в виде протонов, нейтронов и электронов и принцип Паули, можно объяснить, почему периодическая таблица имеет такую структуру, а не другую. Можно объяснить, почему материя имеет форму и плотность. Можно объяснить существование изотопов – атомов с таким же количеством протонов, но другим количеством нейтронов в ядре. При некотором старании можно объяснить всю химию, биохимию и материаловедение.
В таком объяснении масса не представляет никакой загадки. Массу всего материального вещества можно проследить до составляющих ее протонов и нейтронов, на долю которых приходится около 99 процентов массы любого атома.
Представьте себе кубик льда, замороженной воды тройной дистилляции. Кубик с ребрами длиной 2,7 сантиметра, чуть больше дюйма. Возьмите его в руку. Он холодный и скользкий. Он не тяжелый, но ладонь ощущает его вес. Итак, из чего складывается масса кубика?
Молекулярная масса воды считается по суммарному количеству протонов и нейтронов в ядрах двух атомов водорода и одного атома кислорода, которые составляют молекулу H2O. Ядро каждого атома водорода состоит всего из одного протона, а ядро атома кислорода содержит 8 протонов и 8 нейтронов, что дает в сумме 18 нуклонов. Кубик чистого льда, который вы держите в руке, весит около 18 граммов[5], это масса его молекул в граммах. Таким образом, кубик представляет собой стандартную единицу измерения воды в твердом состоянии, которая называется молем.
4
Существуют элементы тяжелее урана, но они не встречаются в природе. Они нестабильны, поэтому их приходится искусственно производить в лаборатории или ядерном реакторе. Самый известный пример – это, пожалуй, плутоний.
5
Плотность чистого льда при 0 °C равна 0,9167 грамма на кубический сантиметр. Объем кубика около 19,7 кубического сантиметра, таким образом, его масса чуть больше 18 граммов.