Выбрать главу

Рисунок 4.2

Сети цепочки создания стоимости в исследовательских лабораториях.

Традиционное использование лабораторного оборудования: В основном аналоговое, с незначительной интеграцией данных

Лабораторное оборудование можно охарактеризовать как относящееся к трем категориям. К первой категории относится оборудование, работающее круглосуточно, например, морозильные камеры и инкубаторы. Морозильные камеры необходимы для хранения некоторых реагентов, антител и наборов для анализа при температурах минус 20 или минус 80 градусов Цельсия. Инкубаторы, например, необходимы для поддержания культур клеток при заданных температуре и влажности, а также для обеспечения их кислородом и углекислым газом. В исследовательских лабораториях такое оборудование обычно работает круглосуточно. Любой перерыв в работе может изменить состав клеточных культур таким образом, что это может привести к срыву проводимых с их использованием экспериментов.

Оборудование второй категории используется по мере необходимости. Центрифуги используются в тех случаях, когда в ходе эксперимента необходимо разделить жидкости и вещества с различной плотностью. Например, центрифуги используются для разделения различных компонентов крови, таких как эритроциты, лейкоциты, тромбоциты и плазма. Некоторые специализированные лабораторные весы также используются в тех случаях, когда в ходе эксперимента требуется с высокой точностью измерить малые массы в субмиллиграммовом диапазоне. Первые две категории оборудования, как правило, являются аналоговыми. Учет их использования обычно ведется вручную. Например, ученый может измерить массу соединения и записать показания в бумажный лабораторный блокнот.

Третья категория оборудования поставляется со встроенным программным обеспечением, которое может быть подключено к внешним компьютерам. Как правило, такое оборудование выдает не просто числа, а файлы данных. Например, масс-спектрометр, используемый для определения молекулярного состава образца на основе наблюдения спектра ионов в нем, нуждается в программном обеспечении. Он обнаруживает, в частности, небольшие количества белков, биомаркеров или молекул лекарств, даже если они встречаются в низких концентрациях. Интерпретация данных масс-спектров предполагает анализ больших объемов информации и выполнение утомительных расчетов, что сложно сделать без программных алгоритмов. Хотя такое оборудование может генерировать и записывать данные в цифровом виде, эти данные изолированы друг от друга в рамках каждой единицы оборудования и подключенного к ней компьютера. Эти данные не предназначены для удобного обмена и интеграции с данными, полученными от другого лабораторного оборудования.

Три категории оборудования представляют собой "сырую" сеть цепочки создания стоимости в типичной исследовательской лаборатории. Поскольку в исследовательские лаборатории вкладываются огромные средства, любое повышение операционной эффективности может оказать существенное влияние на конечный результат деятельности лаборатории. Как же компании могут преобразовать эту сеть цепочек создания стоимости в цифровую производственную экосистему? Каких преимуществ они могут ожидать?

Новая операционная эффективность за счет данных и интеграции данных

Познакомьтесь с Шридхаром Айенгаром, генеральным директором и основателем компании Elemental Machines, которая превращает множество разрозненного лабораторного оборудования в единую сеть с помощью датчиков и IoT. Датчики помогают отслеживать различные контекстные переменные, такие как температура, влажность, давление воздуха и освещенность, когда ученые проводят свои эксперименты с использованием различного лабораторного оборудования. Почему такие данные важны? Шридхар объясняет это на примере личного анекдота, который он услышал от двух коллег из двух разных институтов.

Когда друзья Шридхара работали в лаборатории биологии, они заметили нечто необычное в ходе своих экспериментов. Как известно всем исследователям, эксперименты считаются успешными только тогда, когда они воспроизводимы. Другими словами, результаты не должны меняться при повторении одного и того же протокола эксперимента. В данном конкретном эксперименте результаты были непоследовательными. Однако при повторении экспериментов исследователи заметили закономерность. Результаты не совпадали только в определенные дни недели, в то время как в другие дни они были постоянными. Причина? В эксперименте участвовали мыши. В определенные дни недели на строительной площадке по соседству проводились ночные смены, и связанные с этим шум и вибрация влияли на ночной режим мышей в лаборатории.