Выбрать главу

Нет практически никаких сомнений, что Пифагор родился в начале VI века до н. э. на острове Самос, неподалеку от побережья современной Турции. Вероятно, в юности он много путешествовал, особенно в Египет и, возможно, в Вавилон, где и получил первоначальное математическое образование. Затем он эмигрировал в маленькую греческую колонию Кротон у южной оконечности Италии, где вокруг него быстро собралась группа энтузиастов – учеников и последователей.

Греческий историк Геродот (ок. 485–425 гг. до н. э.) назвал Пифагора «величайшим эллинским мудрецом» (Herodotus 440 гг. до н. э.), а поэт и философ-досократик Эмпедокл (ок. 492–432 гг. до н. э.) восхищенно добавил (Porphyry ca. 270 AD)/

Жил среди них некий муж, умудренный безмерным познаньем,

Подлинно мыслей высоких владевший сокровищем ценным,

В разных искусствах премудрых свой ум глубоко изощривший.

Ибо как скоро всю силу ума напрягал он к Познанью,

То без труда созерцал любое, что есть и что было,

За десять или за двадцать провидя людских поколений.

(Пер. Г. Якубаниса в обр. М. Гаспарова.)

Однако не на всех учение Пифагора производило такое сильное впечатление. Философ Гераклит Эфесский (ок. 535–475 гг. до н. э.) в комментариях, в которых явственно прослеживается личное соперничество, признает широкие познания Пифагора, однако тут же пренебрежительно добавляет: «Многознание не научает быть умным, иначе бы оно научило Гесиода (греческого поэта, жившего около 700 г. до н. э. – М. Л.) и Пифагора» (пер. М. Дынника).

Пифагор и ранние пифагорейцы не были ни математиками, ни учеными в строгом смысле слова. Скорее, в основе их учения лежит метафизическая философия значения чисел. В глазах пифагорейцев числа были и актуальными сущностями, практически живыми, и универсальными принципами, которые охватывали все, от небес до человеческой этики. Иначе говоря, числа рассматривались с двух разных, хотя и взаимосвязанных сторон. С одной стороны, они существовали вполне осязаемо, физически, с другой – это были абстрактные рецепты, на основании которых строилось все остальное. Скажем, монада (число 1) понималась и как генератор всех прочих чисел, сущность, столь же реальная, сколь и вода, огонь и воздух, играющая свою роль в структуре физического мира, и как идея, метафизическая единица, стоящая у источника всего творения[8]. О двойном значении, которое придавали числам пифагорейцы, писал (на прелестном языке XVII века) и английский историк философии Томас Стэнли (1625–1678).

Число двояко – его можно понимать либо как нечто умственное (то есть нематериальное), либо как нечто научное. Умственное число есть та вечная сущность числа, которую пифагорейцы в своих рассуждениях о богах называли тем самым первоначалом, на котором и зиждется и земля, и небо, и заключенная меж ними природа… Именно его называют первоначалом, источником и корнем всего сущего… Научное же число Пифагор определяет как расширение и претворение в действие продуктивных первопричин, заключенных в монаде или в скоплении монад (Stanley 1687).

Итак, числа – не просто инструменты для обозначения количества или объема. Нет, их надо было открыть – и именно они служат основными движущими силами в природе. Все во Вселенной, от материальных объектов вроде Земли до абстрактных понятий вроде справедливости, – это числа и только числа.

В принципе, числа вполне могут заинтересовать и увлечь кого угодно, в этом нет ничего удивительного[9]. Ведь даже самые заурядные числа, с которыми мы сталкиваемся изо дня в день, и те обладают занятными свойствами. Возьмем, к примеру, число дней в году – 365. Нетрудно убедиться, что 365 – это сумма трех последовательных квадратов: 365 = 102 + 112 + 122. Мало того, это число также равно сумме двух следующих квадратов (365 = 132 + 142). Или рассмотрим число дней в лунном месяце – 28. Это число – сумма всех своих делителей (чисел, на которые его можно делить без остатка): 28 = 1 + 2 + 4 + 7 + 14. Числа, обладающие этим особым свойством, называются совершенными числами (первые четыре совершенные числа – 6, 28, 496, 8218). Отметим также, что 28 – это сумма кубов первых двух нечетных чисел: 28 = 13 + 33. Свои странности есть даже у такого широкоупотребительного в нашей десятичной системе числа, как 100: 100 = 13 + 23 + 33 + 43.

вернуться

8

Популярное изложение пифагорейского учения см. в книге Strohmeier and Westbrook 1999.

вернуться

9

О поразительных свойствах чисел превосходно рассказано в Wells 1986.