Теперь решите последнюю серию примеров еще раз, но теперь выполняя все вычисления у себя в голове. Скоро вы убедитесь, что это легче, чем кажется. Я всегда говорю своим ученикам: вам надо решить пример три или четыре раза в голове, прежде чем станет по-настоящему легко; после этого вычисление, выполненное каждый последующий раз, будет пустяком по сравнению с вычислением, выполненным впервые. Поэтому попробуйте раз пять, прежде чем сдаться и сказать, что это для вас слишком сложно.
Вас не впечатляет, что вам теперь под силу? Ваш мозг не стал лучше в одночасье: просто вы используете его более эффективно благодаря простым, но более совершенным методам математических вычислений.
Глава 2
Опорное число
Мы еще не до конца разобрались с методом перемножения чисел. Для задач, которые мы рассматривали до сих пор, метод работал безупречно. Теперь, после некоторой модификации, мы сможем применить его к любым числам.
Вернемся к примеру 7 х 8.
Число 10 слева от примера является опорным. Это число, из которого мы вычитаем множители.
Итак, запишем опорное число слева от примера. Теперь спросим себя, числа, которые мы перемножаем, являются больше (выше) или меньше (ниже), чем опорное число? В рассматриваемом случае множитель меньше (ниже), чем опорное число, оба раза. Поэтому рисуем кружки ниже множителей. На сколько множители меньше опорного числа? На 3 и 2 соответственно. Вписываем 3 и 2 в кружки. 7 равно 10 минус 3, поэтому ставим знак «минус» перед кружком с цифрой 3. 8 — это 10 минус 2, значит, ставим знак «минус» и перед кружком с цифрой 2.
Теперь вычитаем накрест. 7 минус 2 и 8 минус 3 дают 5. Записываем 5 после знака равенства. Теперь умножим 5 на опорное число 10. 5, умноженное на 10, дает 50, поэтому записываем 0 после 5. (При умножении любого числа на 10 достаточно дописать к числу справа нуль.) 50 является нашим промежуточным результатом.
Теперь перемножим числа в кружках. 3 на 2 дает 6. Прибавим результат к 50 и получим окончательный ответ: 56.
Полностью решенный пример выглядит так:
Каким было опорное число для примера 96 х 97 в главе 1? 100, поскольку мы также выясняли, сколько не хватает у 96 и 97, чтобы получилось 100. Пример, решенный полностью, теперь выглядел бы так:
Прием для счета в уме, который я приводил выше, просто заставляет вас использовать данный метод. Давайте перемножим 98 на 98, и вы поймете, что я имею в виду.
Вычитаем 98 и 98 из 100 и получаем 2 и 2. Отнимаем 2 от 98 и получаем 96. Но мы говорим не «девяносто шесть», а «девять тысяч шестьсот.». 9600 получится, когда мы умножим 96 на вспомогательное число 100. Теперь перемножим числа в кружках. Произведение 2 на 2 равняется 4, поэтому окончательным ответом будет 9604.
Решите следующие примеры в уме:
а) 96 х 96 = ___; б) 97 х 97 = ___; в) 99 х 99 = ___; г) 95 х 95 = ___; д) 97 х 98 = ___
У вас должны получиться следующие ответы:
а) 9216; б) 9409; в) 9801; г) 9025; д) 9506
Теперь вы, возможно, уже умеете быстро находить ответы для подобных примеров. Наверняка вполне освоили данный метод и применительно к числам меньше 10, решая соответствующие примеры с завидной скоростью. Например, если вы захотите вычислить, сколько будет 9 х 9, то немедленно «увидите» по единичке под каждой девяткой. 9 минус 1 дает 8 — и вы сразу получаете 80 (произведение 8 на 10). 1 на 1 дает 1. Таким образом, в ответе вы получаете 81.
Посмотрим, как работает метод для перемножения чисел от 10 до 20. В качестве примера возьмем 13 х 14, а 10 — в качестве опорного числа.
И 13, и 14 больше (выше) опорного числа 10, поэтому рисуем кружки над множителями. На сколько они больше опорного числа? На 3 и 4 соответственно. Поэтому вписываем 3 и 4 в кружки над 13 и 14. 13 равно 10 плюс 3, поэтому ставим знак «плюс» перед цифрой 3; 14 равно 10 плюс 4, поэтому ставим знак «плюс» перед цифрой 4.
Как и прежде, складываем накрест. И 13 плюс 4, и 14 плюс 3 равно 17. Пишем 17 после знака равенства. Умножаем 17 на опорное число 10 и получаем 170 — это наш промежуточный результат, записываем его после знака равенства.
В качестве последнего шага перемножаем числа в кружках. 3, умноженное на 4, равно 12. Прибавляем 12 к 170 и получаем ответ: 182. Вот так выглядит полностью решенный пример: