Выбрать главу

my_wrapper<T1, T2, T3> make_wrapper(T1 t1, T2 t2, T3 t3)

{

  return {t1, t2, t3};

}

Используя подобные вспомогательные функции, можно было добиться такого же эффекта:

auto wrapper (make_wrapper(123, 1.23, "abc"));

  STL предоставляет множество аналогичных инструментов: std::make_shared, std::make_unique, std::make_tuple и т.д. В C++17 эти функции могут считаться устаревшими. Но, конечно, они все еще будут работать для обеспечения обратной совместимости.

Дополнительная информация

Из данного примера мы узнали о неявном выведении типа шаблона. Однако в некоторых случаях на этот способ нельзя полагаться. Рассмотрим следующий класс-пример:

template <typename T>

struct sum {

  T value;

  template <typename ... Ts>

  sum(Ts&& ... values) : value{(values + ...)} {}

};

Эта структура, sum, принимает произвольное количество параметров и суммирует их с помощью выражений свертки (пример, связанный с выражениями свертки, мы рассмотрим далее в этой главе). Полученная сумма сохраняется в переменную-член value. Теперь вопрос заключается в том, что за тип — T? Если мы не хотим указывать его явно, то ему следует зависеть от типов значений, переданных в конструктор. В случае передачи объектов-строк тип должен быть std::string. При передаче целых чисел тип должен быть int. Если мы передадим целые числа, числа с плавающей точкой и числа с удвоенной точностью, то компилятору следует определить, какой тип подходит всем значениям без потери точности. Для этого мы предоставляем явные правила выведения типов:

template <typename ... Ts>

sum(Ts&& ... ts) -> sum<std::common_type_t<Ts...>>;

Согласно этим правилам компилятор может использовать типаж std::common_ type_t, который способен определить, какой тип данных подходит всем значениям. Посмотрим, как его применить:

sum s {1u, 2.0, 3, 4.0f};

sum string_sum {std::string{"abc"}, "def"};

std::cout << s.value << '\n'

          << string_sum.value << '\n';

В первой строке мы создаем объект типа sum на основе аргументов конструктора, имеющих типы unsigned, double, int и float. Типаж std::common_type_t возвращает тип double, поэтому мы получаем объект типа sum<double>. Во второй строке мы предоставляем экземпляр типа std::string и строку в стиле C. В соответствии с нашими правилами компилятор создает экземпляр типа sum<std::string>.

При запуске этот код выведет значение 10 как результат сложения чисел и abcdef в качестве результата объединения строк.

Упрощаем принятие решений во время компиляции с помощью constexpr-if

 В коде, содержащем шаблоны, зачастую необходимо по-разному выполнять определенные действия в зависимости от типа, для которого конкретный шаблон был специализирован. В С++17 появились выражения constexpr-if, позволяющие значительно упростить написание кода в таких ситуациях.

Как это делается

В этом примере мы реализуем небольшой вспомогательный шаблонный класс. Он может работать с разными типами, поскольку способен выбирать различные пути выполнения кода в зависимости от типа, для которого мы конкретизируем шаблон.

1. Напишем обобщенную часть кода. В нашем примере рассматривается простой класс, который добавляет значение типа U к элементу типа T с помощью функции add:

template <typename T>

class addable

{

  T val;

public:

  addable(T v) : val{v} {}

  template <typename U>

  T add(U x) const {

    return val + x;

  }

};

2. Представим, что тип T — это std::vector<что-то>, а тип U — просто int. Каков смысл выражения «добавить целое число к вектору»? Допустим, нужно добавить данное число к каждому элементу вектора. Это делается в цикле:

template <typename U>

T add(U x)

{

  auto copy (val); // Получаем копию элемента вектора

  for (auto &n : copy) {

    n += x;

  }

  return copy;

}

3. Следующий и последний шаг заключается в том, чтобы объединить оба варианта. Если T — это вектор, состоящий из элементов типа U, то выполняем цикл. В противном случае выполняем обычное сложение.