Выбрать главу

Несмотря на то что аргументы, передаваемые функции по умолчанию, — очень мощное средство программирования (при их корректном использовании), с ними могут иногда возникать проблемы. Их назначение — позволить функции эффективно выполнять свою работу, обеспечивая при всей простоте этого механизма значительную гибкость. В этом смысле все передаваемые по умолчанию аргументы должны отражать способ наиболее общего использования функции или альтернативного ее применения. Если не существует некоторого единого значения, которое обычно присваивается тому или иному параметру, то и нет смысла объявлять соответствующий аргумент по умолчанию. На самом деле объявление аргументов, передаваемых функции по умолчанию, при недостаточном для этого основании деструктуризирует код, поскольку такие аргументы способны сбить с толку любого, кому придется разбираться в такой программе. Наконец, основным принципом использования аргументов по умолчанию должен быть, как у врачей, принцип "не навредить". Другими словами, случайное использование аргумента по умолчанию не должно привести к необратимым отрицательным последствиям. Ведь такой аргумент можно просто забыть указать при вызове некоторой функции, и, если это случится, подобный промах не должен вызвать, например, потерю важных данных!

Перегрузка функций и неоднозначность

Неоднозначность возникает тогда, когда компилятор не может определить различие между двумя перегруженными функциями.

Прежде чем завершить эту главу, мы должны исследовать вид ошибок, уникальный для C++: неоднозначность. Возможны ситуации, в которых компилятор не способен сделать выбор между двумя (или более) корректно перегруженными функциями. Такие ситуации и называют неоднозначными. Инструкции, создающие неоднозначность, являются ошибочными, а программы, которые их содержат, скомпилированы не будут.

Основной причиной неоднозначности в C++ является автоматическое преобразование типов. В C++ делается попытка автоматически преобразовать тип аргументов, используемых для вызова функции, в тип параметров, определенных функцией. Рассмотрим пример.

int myfunc(double d);

.

.

.

cout << myfunc('c'); // Ошибки нет, выполняется преобразование типов.

Как отмечено в комментарии, ошибки здесь нет, поскольку C++ автоматически преобразует символ 'c' в его double-эквивалент. Вообще говоря, в C++ запрещено довольно мало видов преобразований типов. Несмотря на то что автоматическое преобразование типов — это очень удобно, оно, тем не менее, является главной причиной неоднозначности. Рассмотрим следующую программу.

// Неоднозначность вследствие перегрузки функций.

#include <iostream>

using namespace std;

float myfunc(float i);

double myfunc(double i);

int main()

{

 // Неоднозначности нет, вызывается функция myfunc(double).

 cout << myfunc (10.1) << " ";

 // Неоднозначность.

 cout << myfunc(10);

 return 0;

}

float myfunc(float i)

{

 return i;

}

double myfunc(double i)

{

 return -i;

}

Здесь благодаря перегрузке функция myfunc() может принимать аргументы либо типа float, либо типа double. При выполнении строки кода

cout << myfunc (10.1) << " ";

не возникает никакой неоднозначности: компилятор "уверенно" обеспечивает вызов функции myfunc(double), поскольку, если не задано явным образом иное, все литералы с плавающей точкой в C++ автоматически получают тип double. Но при вызове функции myfunc() с аргументом, равным целому числу 10, в программу вносится неоднозначность, поскольку компилятору неизвестно, в какой тип ему следует преобразовать этот аргумент: float или double. Оба преобразования допустимы. В такой неоднозначной ситуации будет выдано сообщение об ошибке, и программа не скомпилируется.

На примере предыдущей программы хотелось бы подчеркнуть, что неоднозначность в ней вызвана не перегрузкой функции myfunc(), объявленной дважды для приема double- и float-аргумента, а использованием при конкретном вызове функции myfunc() аргумента неопределенного для преобразования типа. Другими словами, ошибка состоит не в перегрузке функции myfunc(), а в конкретном ее вызове.