Последние версии GCC на некоторых платформах, включая Linux и Mac OS X, дают программистам возможность более тонкого управления экспортом символов из динамических библиотек: опция командной строки -fvisibility используется для указания видимости символов динамической библиотеки по умолчанию, а специальный атрибут, аналогичный __declspec(dllexport)
в Windows, используется в исходном коде для изменения видимости символов по отдельности. Опция -fvisibility
имеет несколько различных значений, но два наиболее интересных — это default и hidden. Грубо говоря, видимость default означает, что символ доступен для кода других модулей, а видимость hidden означает, что не доступен. Чтобы включить выборочный экспорт символов, укажите в командной строке -fvisibility=hidden и используйте атрибут visibility (видимость) для пометки символов как видимых, как показано в примере 1.7.
Пример 1.7. Использование атрибута visibility с опцией командной строки -fvisibility=hidden
extern __attribute__((visibility("default"))) int m; // экспортируется
extern int n; // не экспортируется
__attribute__((visibility("default"))) void f(); // экспортируется
void g(); // не экспортируется
struct __attribute__((visibility("default"))) S { }; // экспортируется
struct T { }; //не экспортируется
В примере 1.7 атрибут __attribute__((visibility("default")))
играет ту же роль, что и __declspec(dllexport)
в коде Windows.
Использование атрибута visibility
представляет те же проблемы, что и использование __declspec(dllexport)
и __declspec(dllimport)
, так как вам требуется, чтобы этот атрибут присутствовал при сборке общей библиотеки и отсутствовал при компиляции кода, использующего эту общую библиотеку, и чтобы он полностью отсутствовал на платформах, его не поддерживающих. Как и в случае с __declspec(dllexport)
и __declspec(dllimport)
, эта проблема решается с помощью препроцессора. Например, вы можете изменить заголовочный файл georgeringo.hpp из примера 1.2 так, чтобы использовать атрибут видимости, следующим образом.
georgeringo/georgeringo.hpp
#ifndef GEORGERINGO_HPP_INCLUDED
#define GEORGERINGO_HPP_INCLUDED
// определите GEORGERINGO_DLL при сборке libgeorgeringo
#if defined(_WIN32) && !defined(__GNUC__)
#ifdef GEORGERINGO_DLL
#define GEORGERINGO_DECL __declspec(dllexport)
#else
#define GEORGERINGO_DECL __declspec(dllimport)
#endif
#else // Unix
# if defined(GEORGERINGO_DLL) && defined(HAS_GCC_VISIBILITY)
# define GEORGERINGO_DECL __attribute__((visibility("default")))
# else
#define GEORGERINGO_DECL
#endif
# endif
// Печатает "George, and Ringo\n"
GEORGERINGO_DECL void georgeringo();
#endif // GEORGERINGO_HPP_INCLUDED
Чтобы заставить это работать, вы должны при сборке в системах, поддерживающих опцию -fvisibility, определить макрос HAS_GCC_VISIBILITY
.
Последние версии компилятора Intel для Linux также поддерживают опцию -fvisibility.
Metrowerks для Mac OS X предоставляет несколько опций для экспорта символов из динамической библиотеки. При использовании IDE CodeWarrior вы можете использовать файл экспорта символов, который играет роль файла .def в Windows. Вы также можете экспортировать все символы с помощью опции -export all, что при сборке из командной строки является поведением по умолчанию. Я рекомендую метод, использующий для пометки в вашем исходном коде экспортируемых функций #pragma export
, и указание в командной строке -export pragma при сборке динамической библиотеки. Использование #pragma export
иллюстрируется в примере 1.2: просто вызовите #pragma export on
в ваших заголовочных файлах сразу перед группой функций, которые требуется экспортировать, а сразу после нее — #pragma export off
. Если вы хотите, чтобы ваш код работал с инструментарием, отличным от Metrowerks, вы должны поместить обращения к #pragma export
между директивами #ifdef
/#endif
, как показано в примере 1.2.
Давайте кратко посмотрим на опции, использованные в табл. 1.11. Каждая строка команды определяет:
• имя (имена) входного файла (файлов): george.obj, ringo.obj и georgeringo.obj;
• имя создаваемой динамической библиотеки;
• в Windows имя библиотеки импорта.
Кроме того, компоновщик требует опции, которая говорит ему создать динамическую библиотеку, а не исполняемый файл. Большинство компоновщиков используют опцию -shared, но Visual C++ и Intel для Windows используют -dll, Borland и Digital Mars используют -WD, a GCC для Mac OS X использует -dynamiclib.
Несколько опций в табл. 1.11 способствуют более эффективному использованию динамических библиотек во время выполнения. Например, некоторым компоновщикам для Unix требуется с помощью опции -fPIC сгенерировать независимый от положения код (position- independent code) (GCC и Intel для Linux). Эта опция приводит к тому, что несколько процессов смогут использовать единственную копию кода динамической библиотеки. На некоторых системах отсутствие этой опции приведет к ошибке компоновщика. Аналогично в Windows опция компоновщика GCC --enable-auto-image-base снижает вероятность того, что операционная система попытается загрузить две динамические библиотеки в одно и то же место. Использование этой опции помогает ускорить загрузку DLL.
Передать опцию в компоновщик GCC можно через компилятор, используя опцию g++ -Wl,<option>. (За буквой W следует строчная буква l.)
Большая часть других опций используется для указания вариантов рабочей библиотеки и описывается в рецепте 1.23.
Рецепты 1.9, 1.12, 1.17, 1.19 и 1.23.
1.5. Сборка сложного приложения из командной строки
Вы хотите использовать для сборки исполняемого файла, зависящего от нескольких статических и динамических библиотек, инструменты командной строки.
Начните со сборки статических и динамических библиотек, от которых зависит ваше приложение. Если библиотеки получены от сторонних разработчиков, следуйте инструкциям, поставляемым с этими библиотеками; в противном случае соберите их так, как описано в рецептах 1.3 и 1.4.
Затем скомпилируйте в объектные файлы .cpp-файлы своего приложения, как описано в разделе «Сборка простой программы «Hello, World» из командной строки». Чтобы сказать компилятору, где искать заголовочные файлы, требуемые для вашего приложения, используйте опцию -I, как показано в табл. 1.12.