Выбрать главу

Пример 1.17. make-файл для сборки исполняемого файла hello с помощью GCC, измененный с помощью автоматических переменных

# Указываем целевой файл и директорию установки

OUTPUTFILE=hellо

INSTALLDIR=binaries

# Цель по умолчанию

.PHONY all

alclass="underline" $(OUTPUTFILE)

# Собрать hello из hello.cpp

$(OUTPUTFILE) hello.cpp

    g++ -o $@ $<

# Цели Install и clean как в примере 1 16

В командном сценарии g++ -o $@ $< переменная $@ раскрывается как hello, а переменная $< раскрывается как hello.cpp. Следовательно, make-файл из примера 1.17 эквивалентен файлу из примера 1.16, но содержит меньше дублирующегося кода.

Неявные правила

make-файл в примере 1.17 может быть еще проще. На самом деле командный сценарий, связанный с целью hello, избыточен, что демонстрируется выполнением make-файла из примера 1.18.

Пример 1.18. make-файл для сборки исполняемого файла hello с помощью GCC, измененный с помощью неявных правил

# Указываем целевой файл и директорию установки

OUTPUTFILE=hello

INSTALLDIR=binaries

# Цель по умолчанию

.PHONY: all

alclass="underline" $(OUTPUTFILE)

# Говорим make пересобрать hello тогда, когда изменяется hello.cpp

$(OUTPUTFILE): hello.cpp

# Цели Install и clean как в примере 1.16

Откуда make знает, как собирать исполняемый файл hello из исходного файла hello.cpp, без явного указания? Ответ состоит в том, что make содержит внутреннюю базу данных неявных правил, представляющих операции, часто выполняемые при сборке приложений, написанных на С и С++. Например, неявное правило для генерации исполняемого файла из файла .cpp выглядит так, как в примере 1.19.

Пример 1.19. Шаблон правила из внутренней базы данных make

%: %.cpp

# исполняемые команды (встроенные):

    $(LINK.cpp) $(LOADLIBS) $(LDLIBS) -о $@

Правила, первые строки которых имеют вид %xxx:%yyy, известны как шаблонные правила (pattern rules), а символ % действует как подстановочный знак (wildcard). Когда устаревшему пререквизиту не соответствует ни одно из обычных правил, make ищет доступные шаблонные правила. Для каждого шаблонного правила make пытается найти строку, которая при подстановке подстановочного знака в целевую часть правила даст искомый устаревший пререквизит. Если make находит такую строку, make заменяет подстановочные знаки для цели и пререквизитов шаблонного правила и создает новое правило. Затем make пытается собрать устаревший пререквизит с помощью этого нового правила.

Чтобы напечатать базу данных неявных правил GNU make, используйте make -p.

Например, при первом выполнении make-файла из примера 1.18 пререквизит hello цели по умолчанию all является устаревшим. Хотя hello фигурирует как цель правила $(OUTPUTFILE): hello.cpp, это правило не содержит командного сценария, и, таким образом, оно бесполезно для сборки файла hello. Следовательно, make выполняет поиск в своей внутренней базе данных и находит правило, показанное в примере 1.19. Подставляя в правило из примера 1.19 вместо подстановочного знака строку hello, make генерирует следующее правило с hello в качестве цели.

hello: hello.cpp

    $(LINK.cpp) $(LOADLIBS) $(LDLIBS) -o $@

Пока все хорошо, но есть еще кое-что. Повторный взгляд на внутреннюю базу данных make показывает, что переменная LINK.cpp по умолчанию раскрывается как $(LINK.cc). В свою очередь LINK.cc по умолчанию раскрывается как

$(CXX) $(CXXFLAGS) $(CPPFLAGS) $(LDFLAGS) $(TARGET_ARCH)

Наконец, переменная CXX по умолчанию раскрывается как g++, а четыре другие переменные — $(CXXFLAGS), $(CPPFLAGS), $(LDFLAGS) и $(TARGET_ARCH) — раскрываются как пустые строки. После выполнения всех этих подстановок получается следующее правило, которое теперь выглядит более знакомо.

hello: hello.cpp

    g++ $^ -o $@

Запутались? Это не страшно. Если вы изучите приведенное объяснение и потратите некоторое время на изучение внутренней базы данных make, неявные правила приобретут смысл.

Возможности для настройки

Теперь, когда вы увидели, как шаблонное правило из примера 1.19 приводит к тому, что make собирает исполняемый файл hello из исходного файла hello.cpp, вы можете спросить, почему было необходимо использовать столько промежуточных шагов. Почему вместо сложного правила из примера 1.19 во внутреннюю базу данных make просто не добавить правило

%: %.cpp

    g++ $^ -о $@

Ответ состоит в том, что промежуточные переменные, такие как $(CXX), $(CXXFLAGS), $(CPPFLAGS) и $(LDFLAGS), служат как точки настройки (customization points). Например, указав значение LDFLAGS в командной строке, в make-файле или установив значение переменной среды, можно указать дополнительные флаги, передаваемые компоновщику. Переменные CPPFLAGS и CXXFLAGS играют схожую роль для опций препроцессора и компилятора C++ соответственно. А установив значение переменной CXX, можно указать компилятор, отличный от GCC. Например, чтобы собрать hello с помощью Intel для Linux и используя make-файл из примера 1.18, вы должны в командной строке ввести make CXX=icpc, предполагая, что переменные среды, необходимые для компилятора Intel, уже установлены.

VPATH и директива vpath

В примере 1.18 make может применить правильное шаблонное правило, потому что файл .cpp находится в той же директории, в которой создается выходной файл. Если исходные файлы находятся в другой директории, то для указания make, где искать цели или пререквизиты, используется переменная VPATH.

VPATH = <путь-к-файлам-cpp>

Чтобы сказать make, что выполнять поиск определенных типов файлов требуется в определенном месте, используйте директиву vpath.

# искать файлы .exp в ../lib

vpath %. exp../lib

Смотри также

Рецепты 1.2 и 1.7.

1.16. Сборка статической библиотеки с помощью GNU Make

Проблема

Вы хотите использовать GNU make для сборки статической библиотеки из набора исходных файлов C++, таких как перечисленные в примере 1.1.

Решение

Вначале в директории, где должна быть создана статическая библиотека, создайте make-файл и объявите фиктивную цель all, единственным пререквизитом которой будет статическая библиотека. Затем объявите цель статической библиотеки. Ее пререквизитами должны быть объектные файлы, входящие в состав библиотеки, а ее командный сценарий должен представлять собой командную строку для сборки библиотеки из набора объектных файлов, аналогично показанному в рецепте 1.3. При использовании GCC или компилятора с похожим синтаксисом командной строки настройте, если требуется, неявные правила шаблонов, изменив одну или более переменных CXX, CXXFLAGS и т.п., используемых в базе данных неявных правил make, как показано в рецепте 1.15. В противном случае, используя синтаксис шаблонных правил, описанный в рецепте 1.16, напишите шаблонное правило, говорящее make, как с помощью командной строки из табл. 1.8 компилировать .cpp-файлы в объектные. Далее явно или неявно объявите цели, указывающие, как каждый из исходных файлов библиотеки зависит от включаемых в него заголовков. Эти зависимости можно описать вручную или сгенерировать их автоматически. Наконец, добавьте цели install и clean, как показано в рецепте 1.15.

Например, чтобы с помощью GCC в Unix собрать из исходных файлов, перечисленных в примере 1.2, статическую библиотеку, создайте в директории johnpaul make-файл, показанный в примере 1.20.

Пример 1 20. make-файл для создания libjohnpaul.a с помощью GCC в Unix

# Укажите расширения файлов, удаляемых при очистке

CLEANEXTS - о а