В 1887 г. считалось, что вся Вселенная заполнена веществом, называемым «эфир». Именно эфир переносил световые волны, магнитные силы и тому подобное. Более того, предполагалось, что он совершенно неподвижен. Майкельсон и Морли надеялись, что, обнаружив различие в скорости света, когда она складывается с видимой скоростью Земли и направлена перпендикулярно к ее движению, они измерят «истинное» движение.
К изумлению Майкельсона и Морли, скорость света оказалась одинаковой, вне зависимости от направления. Они повторили этот эксперимент, как это сделали и другие люди, но результат всегда оставался таким. Скорость света (в вакууме) не менялась, независимо от движения объекта, который испускал свет.
Это истолковали так, что эфира не существует и во Вселенной нет ничего, что можно было бы считать неподвижным. Однако наличие Вселенной, в которой все движется и ничто не находится «в состоянии покоя», с которым можно сравнивать все движение, опрокидывало некие основополагающие понятия, которые ученые имели со времени Ньютона.
В 1905 г. двадцатишестилетний немецкий математик но имени Альберт Эйнштейн, работавший в тот момент в патентном ведомстве в Швейцарии, опубликовал статью, в которой выдвинул то, что называют специальной теорией относительности. В ней он попытался разработать систему вселенной, где свет в вакууме всегда двигался с одинаковой скоростью. Оказалось, что такая вселенная должна сильно отличаться от той, которую знали ученые.
Например, длина объекта изменялась в соответствии с его скоростью, и то же происходило с количеством материи в нем. В старой вселенной системы Ньютона длина и количество материи никак не были связаны со скоростью. Опять же, во вселенной Эйнштейна материя была эквивалентом энергии, а энергия — материи, в соответствии с очень простой формулой; одно могло превращаться в другое. В системе Ньютона материя и энергия не были связаны.
Ну, так какая же система правильная? Обе они не могли быть правильными. Проблема в том, что это трудно определить. При обычных условиях система Эйнштейна дает ту же картину, что и система Ньютона. Например, при обычных скоростях, скажем, до полутора тысяч километров в секунду, изменения длины или количества материи настолько малы, что их невозможно обнаружить. При обычных условиях столь малая часть материи переходит в энергию или наоборот, что заметить нельзя.
Только при экстремальных условиях, при скоростях в сотни тысяч километров в секунду или при радиоактивном распаде, появляется огромное различие между системами Эйнштейна и Ньютона, и тогда мы можем вынести решение.
Например, в 1915 г. Эйнштейн опубликовал еще одну статью, где была выдвинута общая теория относительности, в которой он применил новые принципы Вселенной к гравитации. В соответствии с теорией Эйнштейна, гравитация — это не сила, которая удерживает объекты. На самом деле оказывалось, что она появлялась потому, что пространство рядом с массивным телом искривлялось. Чем больше тело, тем более сильным было искривление.
Небольшое скопление материи, приближающееся к более крупному телу, просто следует по изгибу и вращается вокруг него. Это вполне естественная вещь: так сани, быстро мчащиеся с горы и подкатывающиеся к крутому склону, естественно взбираются на этот склон, начиная двигаться по изогнутой траектории.
Конечно, искривление пространства действует так, что движение планет оказывается приблизительно таким, как если бы между ними и Солнцем действительно существовали гравитационные силы, как это предположил Ньютон. Разница становится заметной только при экстремальных условиях.
Одним из экстремальных условий можно назвать ситуацию, когда маленькое тело оказывается очень близко от крупного. В нашей Солнечной системе Меркурий — единственная планета, которая находится достаточно близко от Солнца, так что условия становятся достаточно экстремальными, чтобы продемонстрировать различие между системами Ньютона и Эйнштейна. Это добавочное перемещение перигелия в 40 секунд за сто лет не может быть объяснено с помощью гравитационной математики, зато его можно точно объяснить с помощью релятивистской механики.
РЕШАЮЩЕЕ ЗАТМЕНИЕ
Таким образом, движение перигелия Меркурия было объяснено — при условии, что теория Эйнштейна верна. Но была ли она верна? Астрономам не хотелось без особых оснований отказываться от идей Ньютона.
В конце концов, Эйнштейн заранее знал о наличии 40-секундного несовпадения движения Меркурия, накапливающегося за сто лет. Естественно, он подогнал свою теорию так, чтобы это объяснить. Значит, одного этого было недостаточно, чтобы доказать правильность его теории.
Однако предположим, что удалось бы найти еще какое-то условие, которые окажется достаточно экстремальным, чтобы продемонстрировать различие между системами Эйнштейна и Ньютона, причем такое, которое ученые еще не исследовали. Тогда обе системы будут работать, так сказать, вслепую. Затем можно провести необходимые наблюдения и прийти к выводу относительно обеих систем.
Например, если пространство искривлено, как это утверждал Эйнштейн, то свет должен следовать но кривой, точно так же, как и планеты. Поскольку свет движется чрезвычайно быстро, то он изгибается очень слабо, но Эйнштейн предсказал, что при экстремальных условиях, если бы свет проходил очень близко от Солнца, его искривление станет достаточно большим, чтобы его можно было измерить.
В то же время, согласно Ньютону, гравитация воздействует только на материю. Свет гравитации не подвержен (луч фонарика легко уходит вверх, против направления притяжения Земли), так что луч света не подвергнется воздействию гравитации и будет продолжать движение но идеально прямому пути, как бы близко от Солнца он ни проходил.
Итак, никому не приходило в голову проверить, не искривляется ли свет, проходя мимо Солнца, так что наблюдений этого явления не существовало.
Однако Эйнштейн выдвинул свою общую теорию относительности в 1915 г. Европа тогда была охвачена войной, и науке пришлось подождать.
В 1918 г. война закончилась, а в 1919 г. должно было произойти полное затмение, которое можно было наблюдать с острова Принсипи в Западной Африке. Международный характер науки таков, что никого не удивило, что англичане возьмут на себя лидерство в проверке теории немца после того, как Англия и Германия в течение четырех лет вели кровопролитную войну.
Королевское астрономическое общество Англии организовало экспедицию на Принсипи специально для того, чтобы проверить системы Эйнштейна и Ньютона. Во время затмения свет Солнца на несколько минут будет закрыт. В течение этих немногих минут станут видны звезды по соседству с Солнцем. Крошечный луч света от каждой из этих звезд сможет достигнуть Земли, только пройдя вблизи от Солнца. Если верна теория Ньютона, эти звезды окажутся в тех же местах, где они обычно бывают ночью, когда их свет не проходит рядом с Солнцем. Если верна теория Эйнштейна, то все звезды окажутся чуть в стороне от своего обычного положения из- за искривления света. В каждом случае звезда окажется чуть дальше от Солнца, чем ей следовало бы быть. Максимальное смещение составит примерно 1¾ дуги. Это крошечная величина, но она вполне поддается измерению.
Это затмение стало, наверное, самым важным в истории астрономии. Сделанные фотографии спешно доставили в Англию. Положение звезд измерили...
И они оказались смещены!
Они были смещены приблизительно в том направлении и в той степени, которые предсказал Эйнштейн. Он одержал явную победу! С тех пор наблюдения повторяли несколько раз, получая тот же самый результат.
На самом деле различные стороны системы Эйнштейна уже подверглись проверке, и в каждом случае было видно, что система работает. Атомная бомба — одно из самых очевидных доказательств правильности одной из частей теории Эйнштейна.
И ЧТО ТЕПЕРЬ?