Если производитель его не указывает, то для вычислений можно принимать значение 0.8.
Давайте рассмотрим пример. Пусть освещенность плоскости объекта составляет около 300 лк, как примерно в любом помещении офиса (пусть это будет Eobject), яркость можно найти, используя коэффициент отражения окружающих объектов, т. е. L = Eobject·р. Как уже упоминалось выше, различные объекты имеют различные коэффициенты отражения, но мы не далеко уйдем от реальности, если примем его равным 50 % для условий офиса. Если диафрагма объектива установлена на F/16, то освещенность ПЗС-плоскости будет составлять приблизительно Епзс = 0.8–3.14 — 300∙0.5/(4 — 256) = 0.З блк. Это вместе с АРУ (AGC) камеры вполне реалистичная освещенность плоскости ПЗС-матрицы полного видеосигнала. Если же диафрагма объектива установлена на F/1.4, например, то освещенность ПЗС-плоскости будет равна примерно 48 лк (согласно соотношению (17)). Это значение гораздо выше необходимого для ПЗС-матрицы, и на практике она может дать узнаваемое изображение, только если используется автоустановка диафрагмы или если камера снабжена электронной встроенной (или ПЗС) диафрагмой. Если используется ручная установка F/1.4 и АРУ камеры отключена, 48 лк на чипе даст интенсивное или размытое белое изображение.
Базовое практическое правило заключается в том, что даже с низким F-числом объектив ослабляет свет в десятки раз. Чем выше F-число, тем ниже количество света, достигающего ПЗС-плоскости. Фактически оно обратно пропорционально квадрату F-числа.
Полученные результаты приводят нас к очень интересному вопросу, связанному с ПЗС-камерами (особенно ч/б): если освещенность объекта такая же, как в солнечный день (примерно 100 000 лк), то F-число должно быть очень велико. Это порядка 0.1–0.3 лк (или около того) для полного видеосигнала. Такое F-число действительно столь велико, что объектив должен ослаблять сигнал в 1 000 000 раз. Используя приближенную формулу (16) и предполагая такие же значения для τ = 0.8 и р = 0.5, а также имея в виду, что ПЗС-матрица камеры требует 0.2 лк на 1 Vpp сигнал, мы получим F-число, равное 886.
Это очень большое число для механических средств (листового затвора). Точность его движения ограничена, и, что еще более важно, при малых раскрытиях диафрагмы становится заметен нежелательный оптический эффект, называемый краевой рефракцией Френеля. На практике это означает, что очень высокие F-числа не могут быть достигнуты при использовании лишь механических методов. Поэтому используются специальные оптические фильтры нейтральной плотности (neutral density filter, ND), чтобы помочь затвору обеспечить высокие F-числа, требуемые для чувствительных ПЗС-матриц.
Для обеспечения полностью насыщенного сигнала в 1 Vpp на выходе камеры (с отключенной АРУ) в случае ч/б ПЗС-матриц Епзс должно быть около 0.1 лк. Некоторые производители приводят более низкие значения, ссылаясь обычно лишь на процент видеосигнала.
Цвет — очень важная и сложная проблема в видеонаблюдении. Хотя многие все еще предпочитают монохромные (ч/б) камеры, которые имеют более высокую чувствительность и реагируют на невидимый инфракрасный спектр, цветные камеры получают все более широкое распространение. За последние несколько лет, прошедшие со времени предыдущего издания книги, немало производителей стали предлагать так называемые камеры «день/ночь», которые автоматически переключаются в черно-белый режим, когда уровень освещенности падает ниже определенного значения.
Цвет дает ценную дополнительную информацию о наблюдаемых объектах. Но важнее то, что человеческий глаз фиксирует цветовую информацию быстрее, чем мелкие детали объекта. Впрочем, недостатком цветных телекамер были худшие (по сравнению с черно-белыми телекамерами) эксплуатационные показатели в условиях слабой освещенности. Это связано с использованием инфракрасного отсекающего фильтра на ПЗС-матрицах цветных телекамер, который ослабляет свет и убирает невидимое излучение инфракрасного диапазона. На этом мы остановимся более подробно в соответствующей главе, посвященной телекамерам, а сейчас отметим, что постоянное усовершенствование технологии ПЗС значительно улучшает работу цветной камеры при минимальном освещении. Если еще несколько лет назад мы имели показатель 10 лк @ F1.4, то сегодня могут «видеть» при 1 лк @ F1.4 на объекте и даже меньше.
Как уже говорилось, цвета, которые мы видим, соответствуют волнам света разной длины.
Например, видимый нами красный цвет — это излучение с соответствующими длинами волн, отраженное от красного объекта, на который падает белый свет. Черный поглощает волны почти любой длины, тогда как белый большинство из них отражает.
Наука цветов очень сложна, и становится еще сложнее, когда окружающие нас естественные цвета воспроизводятся при помощи покрытия ЭЛТ люминофором.
Идея создания цветов в телевизоре заключается в смешении путем сложения (аддитивном) соседних люминесцентных точек трех основных цветов. Эти крошечные точки очень малы и представляют собой элементы маски экрана ЭЛТ-монитора. Такая же концепция используется и при смешивании цветов в плазменных панелях и ЖК-мониторах, но, поскольку в видеонаблюдении по-прежнему наиболее распространены ЭЛТ-мониторы, мы детально рассмотрим именно их.
Фактическое смешивание цветов происходит тогда, когда мы смотрим на монитор с нормального расстояния (в пару метров), и глаз воспринимает итоговый цвет каждой из этих трех точек.
Для сравнения, в живописи и печати цвета получаются в результате смешения путем вычитания цветов (субстрактивного).
При аддитивном смешении цвет получается путем покрытия ЭЛТ люминофором, и сложение цветов делает итоговый цвет ярче. Поэтому, чтобы получился белый, должны присутствовать все три цвета в соответствующей пропорции. Получающиеся в результате цвета производятся путем сложения цветов.
Когда цвета смешиваются путем вычитания, мы используем бумагу или акриловое волокно в качестве вторичного источника света (отраженного), и цвета смешиваются в нашем глазу после того, как они отражаются от поверхности. Если мы смешиваем (путем сложения) все основные цвета, то получаем более темные цвета, а не более яркие. Цвета смешиваются отраженным светом, чей цвет определяется пигментом, который поглощает (вычитает) длину волны его поверхности.
Но вернемся к телевизору. В качестве основных, как уже упоминалось, используются три цвета: красный, зеленый и синий (RGB).
Рис. 2.13. Цветное изображение в телевидении создается при помощи тройных точек из кристаллического люминофора (RGB)
Теория телевидения и многочисленные эксперименты демонстрируют, что с помощью этих трех основных цветов можно передать большинство естественных цветов (но не все).
Очевидно, внутри цветной ЭЛТ имеются три разных люминесцентных слоя, каждый из которых излучает собственный цвет во время электронного облучения.
Три основных люминесцентных слоя имеют различные свойства яркости, то есть равная интенсивность пучка производит неравную яркость. Чтобы компенсировать эти несоответствия основных люминесцентных слоев, все цветные телевизоры и мониторы оснащены специальной матричной схемой, которая умножает каждый цветовой канал на соответствующее корректирующее число.
Это демонстрирует самое известное уравнение яркости цветного ТВ, которое с помощью электроники применяется к трем основным сигналам в ЭЛТ:
L = 0.3R + 0.59G + 0.11B (28)
Рис. 2.14. Теневая маска RGB