Эйнштейн в своей работе не озвучивает инвариантность прямо, но ставит, сразу после отмеченных суждений, мысленный эксперимент, в котором свет движется подобным образом.
Приведу пример инвариантности, демонстрирующий релятивистский эффект замедления времени. Это известный пример, который предназначен для читателя, с теорией относительности не знакомым. Он по существу схож с мысленным экспериментом Эйнштейна.
Представьте, что от земли улетает ракета. Наблюдатель с земли пускает вслед ракете луч света. Для него свет летит со скоростью 300 тыс. км/с., и, чем быстрее летит ракета, тем дольше ее догоняет свет. Если ракета летит со скоростью 10 км/сек. то свет догонит ракету, допустим за секунду. Но, если ракета летит с почти световой скоростью, то свет ее может догонять и год.
Для космонавта в ракете, свет, относительно него движется всегда со скоростью света, и будет сближаться с ракетой со скоростью 300 тыс. км/с., и догонит ракету быстрее, чем за секунду. С какой бы скоростью космонавт не улетал от земли – свет всегда, с точки зрения космонавта будет догонять его со скоростью света.
Если космонавт улетает от земли с почти световой скоростью, то «с точки зрения» космонавта, пройдет меньше секунды, а для наблюдателя с земли пройдет год, прежде чем свет догонит ракету.
Если космонавт улетает с околосветовой скоростью – то время в ракете практически останавливается, в сравнении с землей. Ведь для наблюдателя пройдет год, пока свет догонит ракету, а для космонавта – меньше секунды.
С логикой инвариантности давайте разберемся подробнее, ведь из нее вытекают все эффекты специальной теории относительности, и, собственно, сама теория относительности.
Поскольку движение в вакууме относительно, то любое движение можно считать (как в примере Джордано Бруно) от наблюдателя. Наблюдатель в вакууме получается неподвижным, его скорость равна нулю. Наблюдатель находится в своей системе отсчета. В работе Эйнштейна она называется «координатная система», далее получила название «инерционная система отсчета».
Берем двух наблюдателей в вакууме, которые прямолинейно движутся относительно друг дружки.
Скорость каждого из наблюдателей в вакууме равна 0, поскольку каждая координатная система считается неподвижной.
Скорость света в вакууме равна с.
Поэтому, свет в вакууме движется со скоростью с для каждого из наблюдателей.
Вообще, некорректно было считать, что скорость наблюдателей и их систем отсчета в вакууме равна 0. Наблюдатель покоится относительно других наблюдателей, но не относительно вакуума, и его скорость в вакууме не подлежит определению. Тем не менее, так был поставлен мысленный эксперимент Эйнштейном.
«Свет в вакууме всегда движется со скоростью с» Эйнштейн превратил в «свет в вакууме всегда движется со скоростью с относительно всякого наблюдателя».
Из самой работы Эйнштейна следует, что инвариантность – софизм, поскольку истинным может быть либо относительное движение, либо постулат о скорости света в вакууме.
Ведь если признать, что свет в вакууме движется всегда со скоростью с, то отрицается относительность движения. Если же признать, что движение в вакууме относительно, то бессмысленно говорить о скорости света в вакууме.
Из инвариантности логически вытекают релятивистские эффекты специальной теории относительности: относительность одновременности, замедление времени и другие.
Эксперимент Эйнштейна позже проиллюстрировали как эксперимент с двумя наблюдателями и поездом. Он похож на приведенный выше пример с космонавтом и ракетой. Один из наблюдателей находится на перроне, второй – в купе поезда, в котором включается свет. Эта иллюстрация чуть отличается от мысленного эксперимента, но по сути такая же, и приводит к тем же выводам.
https://www.youtube.com/watch?v=3L8IGCC0Dog – вот тут анимация, простое и понятное видео эксперимента.
Наблюдатель в поезде включает лампочку, которая находится посредине купе.
В системе наблюдателя в поезде, свет от лампочки будет двигаться с одинаковой скоростью к передней и задней стенке поезда, и достигнет их одновременно.
В системе же наблюдателя на перроне, поезд движется, и свет будет догонять переднюю стенку, и достигнет ее позже, чем заднюю.
Отсюда и относительность одновременности – свет для одного наблюдателя достигнет стенок одновременно, а для другого – одной стенке раньше, другой-позже.
Отсюда и замедление времени – свет достигнет передней стенки для наблюдателя в купе быстрее, чем для наблюдателя на перроне.