Выбрать главу

Любимым поводом для подобных спекуляций служат идеи натурфилософии – их-то не опровергнешь опытом. А подаются они как «научно доказанные» – в виду того, что философия нынче не в почете, а за «научные открытия» подобного толку, авторы получают щедрые награды.

Однако, есть идеи, не имеющие за их последователями какой-то очевидной корысти, либо корысть эта имела место в прошлом. Представлю читателю древнюю теорию зрения, которая сегодня считается научной, но на деле привносит много мистики в сознание, перемешивая субъективное восприятие с объективной картиной мира.

Согласно современной теории зрения, мы видим не сами объекты на расстоянии, когда на них падает свет. Нет, свет должен отразиться от объекта, долететь до нашего глаза, попасть на сетчатку, и «нарисовать» на ней картину объекта. Фотоны тут предстают незримыми капельками краски, а сетчатка глаза являет собою холст. Далее, от сетчатки, идет сигнал к мозгу, который и формирует зрительный образ. Мы видим окружающий мир «в своей голове».

Немногие знают, что этой теории без малого 900 лет, а автор ее – известный арабский ученый, Альхазен.

Хочу привести некоторые доводы против теории Альхазен, и наблюдения, которые ей противоречат. А так же разобраться с оптической геометрией и показать, что она лишь моделирует теорию, но не доказывает ее, и на базе оптической геометрии можно, с равным успехом, построить иную модель зрения.

Происхождение теории уходит корнями в античность. В греческой философии науки была идея, где глаз выпускает некий эфир, который, достигая предметов, освещает их, и, тем самым, делает видимыми. Идея принадлежала Платону, и имела определенную популярность в те времена.

Альхазен перевернул гипотезу испускающего эфир глаза. Теперь не из глаза идет эфир и освещает предметы, а, наоборот – от предмета к глазу идет свет. Эта мысль пришла Альхазену, когда он сидел в темнице и наблюдал эффект, подобный камере обскура – на освещенном участке стенки темницы отражался наружный пейзаж.

В суждениях Альхазена была здоровая логика: если в то время господствовала теория Платона о глазе, испускающем эфир, то, наблюдая отраженные на стене световые картины, вполне уместно было рассуждать противоположным образом. Вряд ли думал Альхазен о том, что конечный зрительный образ рисуется в мозгу – подобная мистификация популярна в наше время, когда мозгу приписывается приписывают вся чувственность. Но он точно считал, что зрение подобно картине, когда на холст-сетчатку падает краска-свет, копируя изображение того предмета, кот которого эта краска отразилась.

Однако есть и другие варианты: в случае камеры обскура, или фотоаппаратов, действует отражение, которое мы наблюдаем в воде, или в зеркале. Отражение – оптический эффект, для которого не нужно, чтобы свет от предмета соприкоснулся с зеркалом, а от зеркала попал в глаз наблюдателя. Чуть ниже мы приведем эксперимент, подтверждающий это.

Совсем не обязательно для зрения, чтобы что-то с чем-то соприкасалось: будь то эфир из глаза, касающийся предмета, или свет от предмета, касающийся глаза. Такая догма сидит в голове взрослого человека, и он не может представить возможности видеть на расстоянии, без материального контакта. Но эта лишь догма – любой ребенок вполне легко и естественно допускает, что он видит сами предметы на расстоянии. И дело не в том, что малое дитя неразумно и не может адекватно воспринимать реальность – наоборот, ребенок тут являет собою чистое, не испорченное ложными стереотипами, сознание.

Проведем несколько мысленных экспериментов. Мы представим себе механику передачи изображения от предмета к глазу с помощью света. Так случилось, что никто о нюансах этой механики не задумывался, но мы эту ошибку исправим, вообразив некоторые опыты, обнаруживающие невозможность передачи изображения подобным способом.

Эксперимент со звездами

Представьте себе безоблачное ночное небо. Звезды неподвижны, а яркость их постоянна, когда наступает глубокая ночь… Согласно теории Альхазен, такая стабильность должна обеспечиваться тем, что в глаза наблюдателя от каждой звезды, в течении несколько часов ночи, равномерно попадает одинаковое количество света. Будь иначе – мы обнаруживали бы другие визуальные эффекты. От огромной звезды отражается множество фотонов, часть из которых достигает нашего глаза. Надо понимать, что фотоны не летят равными порциями в каждый квадратный миллиметр пространства. Где-то их может быть больше, а где-то и не быть вообще. Преодолевая световые годы в путешествии до земли, неравномерность фотонного потока лишь усиливается. В жизни должны наступать моменты, когда ваш глаз вообще не получит фотонов от далекой звезды – они могут пролететь мимо, в течение, например, секунды. И в эту секунду звезда пропадет с небосвода, вы ее не увидите. В другой момент, наоборот, так случится, что концентрация фотонов от этой звезды будет особенно велика в том месте, где вы находитесь. Ваш глаз получит столько света, что звезда вспыхнет яркой вспышкой. Встречались бы случаи, когда света столь много, что наблюдатель мог ослепнуть, глядя на далекую звезду.