Рассмотрим вслед за Бэбиджем на примере арифметических действий, как он предполагал осуществить свои идеи.
Одной из характеристик вычислительной машины является длина (количество разрядов) чисел, с которыми она может производить операции. В качестве стандарта для аналитической машины было выбрано число в пятьдесят разрядов. Бэбидж оказался прав, когда считал, что пройдет достаточно много времени, прежде чем требования науки превысят этот предел. Только в середине 50-х годов XX в. при решении некоторых задач возникла необходимость оперировать числами с большим количеством знаков.
Бэбидж отмечал, что сложение и вычитание чисел в машине должно быть одинаково быстрым независимо от количества разрядов в слагаемых. Приумножении разрядность чисел влияет на время выполнения операции. Например, необходимо перемножить два числа: а1050 + b и c1050 + d, каждое из которых состоит менее чем из ста разрядов, но более чем из пятидесяти. Непосредственно перемножить их в машине, которая оперирует только с числами до пятидесяти разрядов, нельзя. Произведение этих двух чисел будет: ас10100 +(ad + bc)1050 + bd.
Это выражение содержит четыре пары сомножителей (ас, ad, be, bd), каждый из которых состоит менее чем из пятидесяти разрядов. Поэтому такое умножение может быть выполнено в машине. Однако время умножения на машине двух чисел, каждое из которых содержит от пятидесяти до ста разрядов, будет приблизительно в четыре раза больше, чем для двух чисел длиной менее пятидесяти разрядов.
Рассуждая аналогично, Бэбидж доказал, что если количество цифр каждого сомножителя находится между ста и ста пятьюдесятью разрядами, время, требуемое для выполнения операции, будет приблизительно в девять раз больше, чем для пары сомножителей, имеющих до пятидесяти цифр. Бэбидж пришел к выводу, что если количество разрядов в числах возрастает в n раз, то время выполнения умножения чисел возрастает в n² раз. Таким образом, утверждение Бэбиджа о возможности операций с неограниченно большими числами в принципе осуществимо.
Следующий вопрос, который рассматривает Бэбидж, касается условия использования машины, как устройства, содержащего неограниченное число постоянных. Уже отмечалось, что табличные величины могут быть нанесены на перфокарты. В результате массив цифровых карт, получаемых и расставляемых самой машиной, может быть размещен в одном из ее устройств. Перфокарты могут вызываться самой машиной в том порядке, в котором они расположены. Машина может направить их для использования в соответствии с необходимой операцией. Следовательно^ условие, что неограниченное число постоянных может быть введено в машину в неограниченное время также выполняется.
Бэбидж полагал, что разработанная им машина должна хранить тысячу чисел, считая это более чем достаточным. Но если бы потребовалось хранить в десять или в сто раз больше чисел, то в принципе это возможно, поскольку структура машины достаточно проста.
Далее Бэбидж рассматривает возможность неограниченного повторения четырех действий арифметики. Она вытекает из того, что четыре перфокарты операций, пробитые определенным образом, обеспечивают выполнение четырех правил арифметики. Эти карты могут соединяться в любом количестве и в том порядке, в котором необходимо выполнить действие. Очевидно, что порядок следования различных арифметических действий может варьироваться неограниченно.
Бэбидж приходит к выводу, что условия, которые требуются для выполнения расчетов, число операций в которых не ограничено, могут быть реализованы в аналитической машине. «Способы, которые я применил, — писал Бэбидж, — однородны. Я преобразовал бесконечность пространства, которая требовалась по условиям задачи, в бесконечность времени» [85, с. 63]. Разумеется, вывод Бэбиджа относительно возможностей аналитической машины имел сугубо теоретический характер («бесконечность времени» с практической точки зрения не имеет преимуществ перед «бесконечностью пространства»). Даже наиболее производительные современные ЭВМ не в состоянии решать многие задачи из-за ограничений по емкости памяти и быстродействию. Вывод Бэбиджа представляет существенный интерес в другом отношении. Бэбидж показал принципиальную возможность решения с помощью вычислительной машины любой задачи (если это решение может быть достигнуто с цомощыо арифметических операций).
В детальном описании аналитической машины в статье Генри Бэбиджа [80] большое внимание уделено принципу зацепления, позволившему обеспечить сравнительно простое выполнение операций.