Один из ведущих британских политиков заявил недавно, что пользоваться популярностью не входит в его обязанности! Это не так, ибо популярный министр — человек, на которого можно положиться. Пользуясь заслуженным доверием электората, он способствует процессу демократизации. Ни один министр не способен правдиво изложить идею социального равенства, если априорно полагает, будто наделен какими-то качествами, возвышающими его над обществом. Классовая структура всегда навязывается сверху, а не снизу. Поэтому в интересах гармонии и единства тех, кто слишком возомнил о себе, необходимо сбросить с сооруженного ими пьедестала. Иисус Христос ни в коей мере не чувствовал себя униженным, когда омывал ноги апостолам. Наоборот, он, как истинный государь Грааля, вознесся над царством равенства и монаршего служения. Это и есть извечная заповедь Сангреаля, выраженная в учении о Граале предельно ясно. Чтобы зарубцевалась рана царя ловцов и вновь зацвела опустошенная земля, стоит только спросить: «Кому служит Грааль?»
ПРИЛОЖЕНИЕ I
Три стола Грааля
Предание гласит о том, что «Грааль покоился на трех столах: круглом, квадратном и прямоугольном. Все они имели один и тот же периметр, а число три составляло два к одному». Такое туманное описание столов способствовало укоренению мысленного представления о Граале как о предмете подобном кубку или блюду. По этой причине данные предметы мебели уподоблялись столам короля Артура, замка Грааля и Тайной вечери. В действительности же указанное выше соотношение «два к одному» характеризует знаменитую золотую пропорцию и практически не имеет отношения к столам в утилитарном смысле.
Золотая пропорция, представляющая собой гармоническое деление отрезка, использовалась древнегреческим математиком Евклидом в I столетии до Р.Х. На самом же деле применение на практике этого метода началось задолго до Евклида и восходит ко времени Платона. Золотое сечение использовалось в античное время в пропорциях архитектурных сооружений, а в наши дни широко применяется в изобразительном искусстве, при конструировании и дизайне. Приблизительно это отношение равно 5/3, точнее 8/5, 13/8 и т.д.
В основу метода положено разделение линий на отрезки, пропорциональные квадратным корням, которое не требует линейных измерений и осуществляется лишь посредством циркуля. За основу берется квадрат со стороной, равной √1. Раствором циркуля, равным длине его диагонали, отсекаем на продолжении основания отрезок, соответствующий √2. Восстанавливаем из данной точки перпендикуляр, равный √1, и раствором циркуля, равным гипотенузе получившегося треугольника, отмечаем на основании отрезок, соответствующий √3. Продолжая построение далее, получим отрезок, равный √5, являющийся гипотенузой прямоугольного треугольника с соотношением сторон 2:1, представляющим собой вышеозначенную пропорцию Грааля.
Хотя сами отрезки несоизмеримы со стороной единичного квадрата, площади образованных ими квадратов выражаются рациональными числами. В свое время древнегреческие мыслители заключили, что арифметика не может служить основанием для геометрии. Геометрические величины, решили они, имеют более общую природу, чем числа и их отношения. По этой причине в основу всех расчетов была положена геометрия — соотношения длин заменялись соотношениями площадей. Всем известная теорема Пифагора понятна лишь применительно к площадям. Например, площадь квадрата со стороной √1 составляет ровно одну пятую площади квадрата, построенного на длинной стороне прямоугольника, равной √5. Таким образом, соотношение между подкоренными значениями длин сторон, показанных на рисунке прямоугольников, можно использовать для выражения площадей образуемых ими квадратов.
Диагональ прямоугольника с соотношением сторон 1:2 (т.н. сдвоенного квадрата, равная √5), непосредственно связана с золотой пропорцией, широко применявшейся при строительстве храмов и святилищ. Золотая пропорция показывает, что точка делит отрезок так, что большая часть относится к меньшей так же, как весь отрезок к большей части. Искомое отношение отрезков выражается числом φ = (√5 + 1)/2 = 1,618034… Такое обозначение принято в честь древнегреческого скульптора Фидия, жившего в V веке до Р.Х. и руководившего постройкой храма Парфенон в Афинах. В пропорциях этого храма многократно присутствует число φ.