Рис. 16. Свободный стопорный спусковой механизм Берту
Принцип свободного стопорного спускового механизма для маятниковых осцилляторов весьма стар. Теоретически этот принцип разработал еще Галилей, но осуществлен он был намного позднее. Своим слабым влиянием на точность хода часов он привлек внимание передовых часовых мастеров того времени. Одной из попыток использования этого принципа был спусковой механизм Берту, приведенный на рис. 16. Как и другие стопорные спусковые механизмы, он работал с односторонним импульсом, получаемым при каждом полуколебании. Захват и отпуск спускового колеса осуществляли консоль 1 с грузом и листовая пружина 2, закрепленная на маятнике. Импульс сообщали зубья спускового колеса через импульсную площадку маятника 3. Известно решение и в виде двухколесного спускового механизма Юргенса. У этого спуска зубья большого колеса являются захватными, а зубья внутреннего колеса — импульсными.
Из большого количества спусковых механизмов, основанных на аналогичном принципе, укажем еще на спусковой механизм английского часовщика Томаса Рейда (1750 — 1834) от 1804 г. Он отличался от предшествующих спусковых механизмов помимо прочего тем, что маятник получал импульс при колебаниях в обоих направлениях. Спусковое колесо спуска Рейда имеет две системы зубьев. Очень тонкие боковые зубья в виде шпеньков — зубья импульсные, которые сообщают импульсы анкеру через длинные плечи, заканчивающиеся импульсными площадками. Торцовые остроконечные зубья являются захватывающими. Функциональные схемы этого спускового механизма кажутся простыми, но в действительности трудно настроить обе системы рычагов так, чтобы обеспечить правильную работу спускового механизма.
Дальнейшее стремление к освобождению осциллятора от всех внешних влияний (кроме импульсов, необходимых для сохранения постоянства амплитуды колебаний) привело к созданию свободных спусковых механизмов, сконструированных так, чтобы их осцилляторы могли свободно колебаться в течение большей части периода колебания.
Одной из главных частей таких свободных спусковых механизмов был стопорный механизм, который при отходе осциллятора останавливал спусковое колесо. Первый свободный стопорный спуск для малых часов построил в 1748 г. Пьер Леруа (1717-1785), а в 1766 г. он установил его в морском хронометре.
В начале XVIII в. начал работать над развитием хронометрового спускового механизма английский часовщик Джон Гаррисон (1693-1776). Толчок этому дало английское правительство, которое в 1714 г. объявило премию в 10000 фунтов тому, кто изобретет достаточно точный способ определения географической долготы (с точностью в 1°) при плавании из Англии в Индию. Вознаграждение могло быть повышено до 15000 фунтов в случае снижения погрешности до 40′ и, наконец, до 20 000 фунтов при снижении погрешности до 30′. Напомним, что угол в 1° соответствует 4 мин времени. Главный приз попытался получить именно Гаррисон, бывший столяр из Йоркшира, который работал над решением этой проблемы примерно 40 лет своей жизни. После ряда экспериментов он осуществил в 1764 г. решающее испытание на судне «Тартар», плававшем из Портсмута на Ямайку. Его хронометр №4 допустил за 150 дней плавания ошибку только в 54 с и выполнил поставленное условие для получения главной премии. Однако после долгих проволочек Гаррисон смог получить лишь половину обещанной суммы, поскольку адмиралтейство обусловило выплату остальной части денег достижением одинаковой точности другими такими же хронометрами при других рейсах.
Первые опыты Леруа со свободным хронометровым спусковым механизмом были продолжены также Берту.
Завершению развития хронометрового свободного спускового механизма способствовали во второй половине XVIII в. двое известных английских часовщиков — Джон Арнольд (1744-1799) и Томас Ирншау (1749-1814). В конструкциях свободных стопорных хронометрических спусковых механизмов они создали два основных направления. Первое из них осуществлено прежде всего применительно к морским хронометрам: оно имело неподвижный стопор в виде длинной поверхности на одном конце защемленной пружины, возвращавшейся в первоначальное положение силой собственной упругой деформации. Другое направление отдавало преимущество стопору, возвращаемому спиральной пружиной.