Выбрать главу

Электрические часы с кварцевым осциллятором

В 1933-1934 гг. физики Шайбе и Адельсбергер из тогдашнего Имперского физико-технического института в Берлине занялись возможностями использования пьезоэлектрического эффекта для измерения времени. Однако они не были первыми в этой области. Еще за несколько лет до этого, в 1927 г., Гортон и Маррисон в США добились первых положительных результатов в создании кварцевых осцилляторов, первоначально разработанных ими для измерения частоты радиоволн.

Кристаллы некоторых веществ — кварца, сегнетовой соли, турмалина и т.п., — отшлифованные надлежащим способом, приобретают при механическом сжатии на их концевых поверхностях электрический заряд. Этот так называемый пьезоэлектрический эффект имеет двусторонний характер, т.е. при подаче электрического заряда на эти поверхности кристалла происходит, наоборот, его сжатие.

Пьезоэлектрические кристаллы применялись уже с 1922 г. в телеграфии и в радиовещании для управления высокочастотными переменными электромагнитными полями так, чтобы длина передаваемых волн оставалась постоянной. Однако полное использование пьезоэлектрических свойств кристалла кварца было достигнуто лишь после второй мировой войны, когда в экспериментальных лабораториях возникли первые кристаллические часы, надежные в эксплуатации и предназначенные для научных астрономических лабораторий и их лабораторий времени.

Развитие электроники, главным образом применение интегральных схем, открыло путь к использованию кварцевого кристалла и в малых наручных часах. В настоящее время производственная технология часов с осциллятором в виде кристалла кварца достигла такого уровня, что теперь уже многие зарубежные фирмы участвуют в производстве часов самых различных типов с классическим стрелочным циферблатом или с электронным цифровым индикатором. Главные функциональные элементы обеих систем, по существу, одинаковы, только у цифровых часов стрелочный механизм заменен электронным делителем частоты и дешифратором с дисплеем. Главными частями кварцевых часов, общими для часов обоих типов, являются кристаллы кварца, выполняющие функции осциллятора, и делителя частоты. Кристалл в первых кварцевых наручных часах, производившихся в 1968 г. в Швейцарии, колебался с частотой 8192 Гц. Большинство нынешних кристаллов колеблется с повсеместно установленной частотой в 32 768 Гц. Однако, несмотря на это, с точки зрения электроники и эти системы все еще сохраняют характер осцилляторов низкой частоты.

В качестве кристалла используется монокристалл натурального или синтетического кварца. Он вырезается из массы кристалла под определенным углом относительно его кристаллографических осей. Ориентация среза определяет такие важные свойства кристалла, как ход температурной зависимости, индуктивность и добротность. Кварцевый срез снабжен электродами и помещен в стеклянный или металлический корпус, заделанный холодным сварочным швом.

Возбуждение колебаний кварцевого кристалла обеспечивается однотранзисторной или двухтранзисторной схемой. Частота осциллятора, управляемого кристаллом, слишком высока, чтобы можно было ее использовать непосредственно для передачи информации о времени. Поэтому в такой системе используется многокаскадный делитель частоты, который дает секундные импульсы для электронной схемы цифрового индикатора. У часов со стрелочным индикатором сигнал от делителя частоты идет на электромеханический преобразователь. Таким преобразователем может быть камертон с колесом, который раскачивается электромагнитными импульсами катушки, или же вибрационный моторчик, образуемый катушкой, раскачивающей пружину с защелкой, которая толкает зубчики храпового колеса, соединенного со стрелочным индикатором[22].

У цифровых систем электромагнитный преобразователь отпадает и заменяется электрооптической системой. Эту систему образуют два важных элемента — дешифратор и дисплей. Дешифратор преобразует кодированные сигналы делителя частоты в электрические сигналы, создающие цифровое изображение показаний времени на дисплее.

В текущей практике теперь используют семисегментные дисплеи. Отдельные сегменты состоят либо из светодиодов, либо из жидких кристаллов. Первая система обозначается в современном электронном часовом производстве символом LED (Light Emitting diodes Displau), а вторая — LCD (Liquid Crystals Displau). Диоды являются источником светового излучения, а потому показания диодных дисплеев всегда контрастны и очень хорошо читабельны независимо от того, освещаются ли они красным, зеленым или синим светом. Отрицательной стороной диодных дисплеев является сравнительно большой расход электроэнергии, колеблющийся в пределах 5 мА на сегмент. Поэтому производители наручных часов с диодными дисплеями снабжают эти часы кнопками, так что дисплеи зажигается лишь на время подачи информации о времени. В более благоприятном свете представляются жидкие кристаллы, особенно с низким рабочим напряжением в несколько вольт, которые упростили проблемы, связанные с транзисторным преобразователем и его трансформатором напряжения. Несмотря на это, значительным недостатком жидких кристаллов остается их сравнительно короткий срок службы, колеблющийся в пределах четырех-пяти лет. После этого периода приходится дисплей заменять новым. Принцип изображения данных о времени жидкими кристаллами заключается в том, что при подаче электрического напряжения на кристалл изменяется его цвет. В отличие от диодного дисплея окрашенные пластинки кристалла не светятся. Поэтому у циферблата должно иметься вспомогательное освещение, управляемое кнопкой, чтобы можно было видеть показание времени и в темноте.

вернуться

22

В настоящее время вместо таких электродвигателей применяются исключительно микроминиатюрные шаговые двигатели. (Прим. науч. ред.)