Выбрать главу

О комплементарности впервые заговорили выдающийся физик-теоретик Н.Бор (правда, в годы борьбы с космополитизмом этот его термин физики стали переводить как "дополнительность", но биологи познакомились с комплементарностью лет на тридцать позже, когда переводить уже не было надобности). Бор говорил о комплементарности свойств частицы-волны, утверждая случайный, статистический характер явлений в природе.

О том же самом говорил и Мендель, но его не поняли. Не понял Бора и Эйнштейн, который говорил, что мир детерминирован, то есть характер процессов заранее предопределен. "Бог в кости не играет", --- говорил, возражая Бору, Эйнштейн. Спор их разгорелся на Сольвссвском конгрессе в 1927 году.

Победил в конце концов Бор.

Трудно поверить в совпадение, но подобный же спор в том же 1927 году разгорелся и у генетиков. Т.Г.Морган, создатель хромосомной теории наследственности, утверждал неизменность гена и предопределенность развития. А его сотрудник Г.Меллер, наладивший "промышленное" получение мутаций, то есть наследственных изменении гена у дрозофилы - плодовой мушки, - с помощью рентгеновских лучей, стал говорить о случайном и статистическом характере этих процессов. И хотя наука сейчас может вызывать мутации в нужном ей месте и в нужном гене, все же случайность изменений гена не вызывает сомнений.

Примерно в то же время в Берлине Н.В.Тимофеев-Ресовский тоже облучал дрозофил рентгеном. Вместе со своим сотрудником К.Циммером и немецким физиком-теоретиком М.Дельбрюком он задался целью вычислить "объем гена", который, согласно их расчетам, оказался равным кубу со стороной грани в 10 атомов!

Оказалось, что для вызывания мутации квант рентгеновского излучения должен был попасть в группу атомов чийлом не более 1000! Изменяемая часть гена имела молекулярные размеры, что было значительно меньше любого самого маленького белка. Таким образом, была впервые поколеблена теория белкового строения гена.

Но какова же тогда была природа гена? До экспериментального решения этого вопроса оставалось еще долгих десять лет, а до признания всем научным сообществом - все двадцать. Переворот в мозгах ученых, ставивших телегу впереди лошади, проходил долго и мучительно.

Статья берлинской тройки привлекла внимание американца, австрийца и итальянца. Первый, директор Рокфеллеровского фонда У.Вивер, пригласил Дельбрюка в США, где физик-теоретик, слушавший, кстати, лекции Бора в Копенгагене, написал в 1940 году совместно с известным американским химиком Л.Полингом статью, касающуюся принципа комплементарности в биологии.

Австрийский физик-теоретик Э.Шредингер написал книгу "Что такое жизнь? С точки зрения физика", в которой целую главу посвятил статье тройки и обсуждению "апериодичности" строения хромосомы. Книжку читали американец Дж.Уотсон и англичанин Ф.Крик, которые поставили себе целью узнать, как устроен ген.

А в Риме статью прочитал С.Луриа, бежавший от фашистов в США к Дельбрюку. Вместе они стали работать с фагами - вирусами микроорганизмов.

Это было уже после войны, а в 1944 году О.Эйвери из Рокфеллеровского института в Нью-Йорке открыл, что у пневмококков, вызывающих пневмонию, или воспаление легких, генетическим веществом является дезоксирибонуклеиновая кислота (ДНК).

Первым и самым любимым аспирантом С.Луриа был Джеймс Уотсон, которого Луриа послал в Кембридж в знаменитую Лабораторию молекулярной биологии. Именно там Уотсон и встретился с Криком, с которым они в 1953 году представили ученому миру двуцепочную спиральную модель ДНК. Это был день рождения современной биологии! Что же из них себя представляет ДНК?

Это двуцепочная молекула, похожая на спиральную винтовую лестницу, ступеньками которой являются комплементарные пары азотистых оснований (соединений, имеющих в своем составе азот). Основания представляют собой "буквы" генетического кода. Таких букв всего 4: Аденин, Гуанин, тимин и цитозин. Последние два, вернее их названия, напечатаны с маленьких букв потому, что молекулы тимина и цитозина примерно в два раза меньше по своим размерам, чем Аденина и Гуанина. "Боковины" лестницы составлены молекулами сахара дезоксирибозы и остатка фосфорной кислоты НзР04, что можно видеть на схеме

Сахар - Фосфат - Сахар - Фосфат - Сахар - Фосфат - Сахар - Фосфат

Сахар - Фосфат - Сахар - Фосфат - Сахар - Фосфат - Сахар - Фосфат

Из схемы видно, что в комплементарных парах Аденин всегда соединен с тимином, а Гуанин с цитозином. Замена того или иного основания - "буквы" приводит к нарушению комплементарности, что внешне проявляется в виде мутации: изменение окраски, нарушения функции белка, в результате чего может развиваться заболевание или даже наступить смерть. Уже говорилось, что в природе мутации носят случайный характер.

Но так ли уж "случайна" эта случайность? И как быть на молекулярном уровне со старым как мир спором о том, что было вначале - яйцо или курица?

На эти вопросы пытались еще в 1943 году ответить Дельбрюк и Луриа, которые установили, что в системе фаг - бактерия мутации случайны. Спустя почти полстолетия Дж.Кэйрнс из Гарвардского университета так писал об их результатах: "Доктрина, столь пылко защищаемая, есть негативное утверждение: внешний признак никогда не предшествует генам! Но как же проверить "полезность" мутации до их закрепления в генах? Для организма не представляется трудной задача проверки признака до его закрепления в генах".

Вывод этот был сделан на основании экспериментов, проведенных Кэйрнсом с бактериями, которым, например, вместо привычного им черного хлеба стали давать белый или наоборот. Оказалось, что при такой смене бактерии вполне сознательно производят переключение генов, ответственных за усвоение нового источника питания. Получается, что в конкретных случаях мутации и не столь уж случайны. Случайно лишь то, в каких клетках они произойдут.

Главное - сохранение вида.

До сих пор мы говорили о мутациях на генном уровне. Но ген сам по себе в клетке не "работает". Ген можно сравнить лишь с магнитной лентой видеоили аудиокасссты с записанной на ней изображением или музыкой. Но для "прокручивания" кассеты необходимы магнитофон и телевизор. Таким "прокручивающим" устройством в клетке является белок. И мутация в белке выражается в замене той или иной аминокислоты, или "кирпичика", из которого, как уже говорилось выше, строится молекула белка.

Одним из таких функциональных белков является альфа-кристаллин (аК) хрусталика глаза, то есть той "линзочки", с помощью которой фокусируется свет на сетчатке нашего органа зрения.

Известно, что животным, ведущим подземный образ жизни, глаза практически не нужны. Одним из таких животных является ближневосточный спаллакс - нечто среднее между подземной крысой и кротом. Вот уже 40 миллионов лет спаллакс живет под землей. Сегодня глаза у него даже не прорезаются!

Тем не менее хрусталик и сетчатка глаза образуются. Белки хрусталика настолько изменились за долгие годы подземной эволюции, что хрусталик не может менять свою кривизну и фокусировать луч света на сетчатке. Тем не менее, как показали лабораторные исследования, спаллакс способен реагировать на свет!

Так при зимнем освещении, то есть с коротким световым днем, он надевает роскошную пушистую шубу, хотя температура в комнате поддерживалась на уровне 22°С. Если же продолжительность светового дня увеличивали до 16 часов, то он сбрасывал шубу, несмотря на снижение температуры до 17°С.