Аэробные возможности (МПК) зависят от нескольких факторов. Остановимся лишь на одном: запасах энергетических субстратов, в частности, гликогена — важного источника энергии.
По сравнению с кислородом углеводам «повезло». Природа позволила организму откладывать их про запас, создавая депо сахара. Углеводы находятся в виде гликогена в мышцах (2 г на 100 г мышечной ткани) и в печени, а общие запасы их в организме человека составляют 400-600 г.
При беге на сверхдлинные дистанции наблюдается снижение уровня сахара в крови примерно наполовину (рис. 5). Значительное уменьшение сахара в крови (ниже 50—60 мг%) сопровождается упадком сил.
При продолжительной мышечной работе снижение сахара в крови происходит параллельно уменьшению его в печени и мышцах.
Рис. 5. Схема изменения содержания глюкозы в крови и гликогена в печени и скелетных мышцах во время длительной работы
Но это не свидетельствует о каком-то исчерпании углеводных запасов — в организме существуют особые физиологические механизмы, которые стоят на страже кладовых энергии.
Но в условиях продолжительной работы (например, марафонский бег) запасы углеводов могут лимитировать работоспособность.
Профессор В. С. Фарфель приводил интересные наблюдения. Спортсменам до старта предлагался безуглеводный завтрак, состоящий только из мяса и яиц (не было даже хлеба). После этого они пробегали сверхдлинную дистанцию. Большинство финишировали в состоянии резкого истощения, а один из участников, бывший чемпион страны в марафонском беге, сошел с дистанции на 30-м км. Содержание сахара в крови упало у него до 38 мг%. В. С. Фарфель делает вывод, «что единственным способом борьбы с углеводным истощением организма, наступающим при длительном спортивном напряжении, является прием сахара».
В энергообеспечение длительной работы определенный вклад вносят и жиры, но чем интенсивнее нагрузка, тем меньше доля жиров и больше углеводов.
Существенное влияние на аэробные возможности организма оказывают возраст и пол (рис. 6). Так, у женщин максимальное потребление кислорода меньше, чем у мужчин.
Рис. 6. График зависимости МПК от возраста и пола.
Но в возрастном диапазоне от 10 до 70 лет МПК у мужчин и женщин изменяется примерно одинаково. Чем старше человек, тем ниже уровень МПК. Наибольшая аэробная производительность отмечается в 23—30 лет. Характерно, что именно на этот возрастной период приходится обилие рекордных результатов в упражнениях на выносливость.
Природа предоставила нам возможность работать не только в условиях достаточного снабжения кислородом, но и «в долг», то есть при кислородном голодании тканей, благодаря анаэробным источникам энергии.
Рис. 7. Факторы, обеспечивающие анаеробную производительность организма
Анаэробные возможности организма (анаэробная производительность) зависят от ряда факторов (рис. 7).
Во время бега усиление анаэробных реакций может проявиться в увеличении содержания молочной кислоты, в росте кислородного долга, максимальная величина которого—надежный тест анаэробной производительности. Одним из первых определил этот показатель, равный 18,7 л, английский физиолог Хилл. Последующие исследования позволили получить еще большую величину—20—23 л. Так же, как и в случае с МПК, подобный кислородный долг наблюдается только у спортсменов высокого класса. У не занимающихся спортом или активной физкультурой он не превышает 4—7 л или 60—100 мг на 1 кг веса (Н.И.Волков).
Энергетический обмен при длительном беге в основном удел аэробных реакций, но анаэробные процессы тоже играют немалую роль. Например, переход из состояния покоя к бегу всегда связан с усилением кислородного запроса. Но органы кислородного снабжения «тяжелы на подъем», они не могут быстро включиться в работу с максимальной интенсивностью. Здесь и выручает способность работать в условиях кислородной задолженности, так как накопить О2 в организме можно немного: всего 400-500 мл в легких, 900-1000-в крови, 300-400-в мышцах и межтканевой жидкости (рис. 8). Увы, таких запасов хватает лишь на несколько секунд бега.
В мышцах имеется особое белковое образование — миоглобин, который является своеобразным депо кислорода. Это вещество играет важную роль в транспорте кислорода из крови внутрь мышечного волокна. Оказалось, что в мышцах животных, способных длительное время обходиться без кислорода, количество миоглобина увеличено.
Профессор А. Б. Гандельсман, изучая процесс насыщения крови кислородом у бегунов
на длинные дистанции, установил, что спортсмены, тренирующиеся в упражнениях на выносливость, обладают поразительной способностью преодолевать значительные гипоксемические (снижение насыщения крови О2) и гиперкапнические (увеличение СО2 в крови) сдвиги.
Таблица 8
Данные аэробной работоспособности у близнецов
Авторы
Показатель
наследуемости
Шварц
79
Джедда и др.
66
Зациорский и
Сергиенко
73
Чем объяснить более высокую аэробную и анаэробную производительность спортсменов? Прежде всего, влиянием физических упражнений, систематических тренировочных занятий. В последнее время появились данные о том, что МПК значительно запрограммировано генетически (табл. 8), но эти возможности эффективно реализуются опять-таки при условии регулярных тренировок.
Получено много научных данных, показывающих положительное влияние тренировки. Прежде всего, она улучшает адаптацию организма к мышечным нагрузкам. Это происходит за счет увеличения энергетических ресурсов; максимальных изменений систем организма; повышения экономичности физиологических реакций; улучшения врабатываемости, то есть ускорения функций в начале работы; повышения устойчивости к изменениям внутренней среды организма; усиления восстановительных процессов.
В 1927 году впервые было установлено, что в мышцах под влиянием физических упражнений увеличивается содержание гликогена — важного энергетического субстрата. Большие углеводные запасы тренированных мышц делают их независимыми от снабжения сахаром, транспортируемым кровью. Профессор Н. Н. Яковлев в опытах на животных убедительно показал, что уровень гликогена возрастает и в печени (у тренированных животных он на 50% выше, чем у нетренированных).
Исследования содержания гликогена в ряде мышц показали, что при тренировке на выносливость его уровень возрастает только в рабочих мышцах (табл. 9), у бегу на, например, в четырехглавой мышце бедра, икроножной мышце. В мышцах, которые получают незначительную нагрузку, существенных изменений не происходит.
Таблица 9 Содержание гликогена в рабочих мышцах*
Не спортсмены
I разряд
Мастера спорта
Содержание гликогена
в мышцах (г /100 г мышцы)
1,46
(1,08-1,95)
1,8
(1,23-2,92)
2,2
(1,77-2,81)
* По Негтпапзеп, 1977 (184, А).
Запасы гликогена можно увеличить с помощью специальной углеводной диеты. При преобладании в рационе жировых продуктов содержание гликогена составляет 0,6 г/100 г мышцы, при смешанной диете —3,0, при углеводной—4,7 г/100 г мышцы. В результате продолжительность работы с интенсивностью 75% от МПК до полного утомления увеличивается (85).