Третье, и, пожалуй, самое трудное, понятие дарвиновской триады — отбор. Биологи трактуют его соответственно своей дисциплине, в результате чего стала обычной такая его интерпретация: выживает сильнейший, наиболее приспособившийся, то есть выживает тот, кто выжил! Внутривидовой отбор потому и называется отбором, что он отбирает те признаки, те особенности, которые, возникнув в результате действия случайных факторов (мутаций), затем передаются в будущее за счет действия механизма наследственности.
Конечно, подобная трактовка механизма естественного отбора крайне упрощенна, это лишь его скелет. Но она выражает тот образ мышления, которому мы обязаны достижениями современного эволюционного процесса.
Мне, представителю «точного естествознания», пытающемуся воссоздать образ единства мирового эволюционного процесса, недостаточно подобных интерпретаций фундаментального термина «отбор». Мне необходима его более широкая трактовка, позволяющая распространить понятие отбора на объекты неживой природы с одной стороны, и процессы, протекающие в обществе, — с другой. Но прежде чем этим заняться, вернемся еще раз к понятию изменчивости.
Не так давно было открыто и изучено явление, получившее название «странный аттрактор». Оказалось, что траектории многих детерминированных динамических систем могут полностью заполнять некоторый фазовый объем: в любой окрестности любой точки этого объема всегда будут находиться точки, принадлежащие траектории одной и той же системы, порожденные одним и тем же начальным состоянием. Более того, этот объем будет притягивать и остальные траектории системы.
Движения таких систем характеризуются высшей степенью неустойчивости: две любые сколь угодно близкие точки будут порождать совершенно различные траектории. Такие особенности движения были названы в математике некорректностями. Французский математик Ж. Адамар считал, что в «правильных физических теориях» всегда должна иметь место корректность: малым причинам должны отвечать малые следствия. Если задача оказывается некорректной, то она согласно Адамару была неправильно поставлена.
Этот принцип Адамара, который долгое время играл важную роль в математической физике, теперь приходится пересматривать. Процессов, которым свойственна «некорректность», в природе гораздо больше, чем это было принято думать еще несколько десятилетий тому назад. Траектории подобных систем, в частности систем, обладающих «странным аттрактором», несмотря на то, что они порождаются (описываются) вполне детерминированными уравнениями, подобны траекториям, порождаемым случайным процессом. Они не только хаотичны, но и из-за сильной неустойчивости их развитие невозможно прогнозировать: любая сколь угодно малая неустойчивость в вычислениях, а они неизбежны при работе электронных вычислительных машин, ведет к совершенно неправильным результатам. В связи с этими свойствами «странного аттрактора» и из-за аналогичных «неустойчивостей» невольно возникает целый ряд вопросов. Вот, может быть, главные из них.
Если явление «странного аттрактора» или ему подобные — типичные явления природы, то не заставляет ли оно нас увидеть стохастичность макромира в совершенно ином свете? Может быть, для ее объяснения нет необходимости использовать соображения, связанные со стохастичностью микромира?
В самом деле, ведь процессы, порождающие «странный аттрактор» (или аналогичные явления «универсальности», по Фойгенбауму), приводят к поведению систем, неотличимых от случайных процессов. А ведь они возникают «сами по себе» в системах вполне детерминированных, не подверженных каким-либо случайным возмущениям!
И далее. Может быть, принципиальные «некорректности» и неустойчивости, порождающие хаос и неупорядоченность, — это естественное состояние материи, ее движения, на фоне которого время от времени лишь как исключительные явления возникают более или менее устойчивые образования? Может быть, только эти образования мы и способны видеть и изучать, а все остальное происходит без свидетелей, и мы способны регистрировать лишь финальные события? Если встать на эту точку зрения, то, возможно, имеет смысл назвать принципами отбора те причины, которые в нашем «некорректном» мире приводят к существованию более или менее устойчивые образования, которые мы только и можем фиксировать в наших наблюдениях?
Перечисленные вопросы относятся к числу очень непростых. И на них у меня нет удовлетворительных ответов. Все они тесно связаны с другими, еще более глубокими вопросами: что такое в действительности законы природы?
В одной из моих книг (см.: Моисеев Н. Н. Человек, среда, общество. М., 1982, с. 19–20) я говорил о них как о некоторых моделях, отражающих те или иные черты реальности с той точностью, с которой мы сегодня способны их представить или воспроизвести. Мы видим и реагируем на происходящее. Наш опыт показывает, что кажущийся хаос случайностей рождает нечто определенное и закономерное. Вот почему законами природы мы не можем назвать что-либо иное, кроме тех связей между явлениями природы (и событиями), которые мы можем установить эмпирически или средствами логического мышления. Только эти связи мы можем отождествить с теми правилами, которые действуют в нашем мире и определяют его процессы самоорганизации.
Конечно, подобное представление о законах природы может быть уточнено и расширено, но для целей данной книги нам его будет достаточно. Попробуем интерпретировать сказанное, обратившись к концепциям физики и механики, возникшим еще в XVIII веке.
В механике со времен Мопертюи и Лагранжа принято говорить о «виртуальных движениях» или множествах «возможных продолжений», понимая под этим любые «возможные движения», согласные со связями, но необязательно удовлетворяющие законам физики. (Для того чтобы подчеркнуть трудности точного определения и условность языка, обратим внимание на то, что согласие со связями — это тоже закон природы.) Эти «виртуальные движения» могут порождаться любыми произвольными, в том числе «случайными», причинами. Значит, уже в XVIII веке было понятно, что изменчивость (и, в частном случае, стохастичность) предоставляет природе целое «поле возможностей», из которых отбирается, реализуется лишь некоторая исключительная совокупность, удовлетворяющая некоторым специальным условиям (принципам отбора).
Подчеркнем, что в такой трактовке проявляется прямая аналогия с тем понятием отбора, которое используется в биологии. Отбор, следуя своим объективным законам, совершает Природа, а Разум лишь фиксирует этот факт, отражая с той или иной степенью точности ту реальность, которая и «есть на самом деле». В XVIII веке этот факт сделался достоянием механики: было установлено, что реальные движения отбираются из множества виртуальных с помощью законов Ньютона, которые и являются простейшими принципами отбора.
Сегодня мы способны гораздо глубже и шире представить себе среду любых динамических систем и связь между виртуальными и реальными движениями. Из всего множества возможных (мыслимых) движений в реальность «пропускаются» лишь некоторые, исключительные.
Набор фильтров, которые это совершают, то есть принципов отбора, очень велик. И законы Ньютона только одни из них. Внутривидовая борьба, порождающая отбор в живом мире, которую Ч. Дарвин назвал естественным отбором, — другой подобный фильтр. Принципами отбора являются все законы сохранения, законы физики и химии, в частности. К числу принципов отбора относится, конечно, и второй закон термодинамики, невыводимый из законов сохранения. В экономике, например, принципами отбора являются условия баланса и т. д.
Мне кажется, что особую роль в мировом эволюционном процессе играет «принцип минимума диссипации энергии». Сформулирую его следующим образом: если допустимо не единственное состояние системы (процесса), а целая совокупность состояний, согласных с законами сохранения и связями, наложенными на систему (процесс), то реализуется то состояние, которому отвечает минимальное рассеивание энергии, или, что то же самое, минимальный рост энтропии.