Таким образом, в самом начале расширения плотность вещества во Вселенной была удивительно близка к критической. Но почему? Почему силу взрыва, которая определила скорость расширения, природа подобрала такой, что критическая плотность с величайшей точностью совпала с реальной плотностью вещества?
Это и составляет вторую загадку Вселенной, называемую иногда «проблемой критической плотности».
Следующая проблема: почему, несмотря на удивительную однородность Вселенной в очень больших масштабах, в меньших масштабах все же были отклонения от однородности — небольшие первичные флуктуации? Именно эти небольшие сгущения потом под действием сил тяготения уплотнялись и образовали, уже в эпоху, близкую к нашей, галактики и их скопления.
Наконец, существует еще одна проблема. Она связана с предсказываемыми современной теорией особыми частицами, такими, например, как магнитные монополи. Эти своеобразные частицы возникли во Вселенной в эпоху «Великого объединения». Их должно было возникнуть тогда необычайно много. Правда, в ходе последующей эволюции часть монополей и их античастиц — антимонополей проаннигилируют друг с другом. Но, как показали расчеты Я.Б. Зельдовича и М.К. Хлопова, в сегодняшней Вселенной монополей должно остаться очень много — примерно столько же, сколько обычных частиц — протонов. Но ведь монополи в 10 16раз массивнее протонов. Это значит, что плотность вещества в виде монополей в сегодняшней Вселенной была бы в 10 16(!) раз больше, чем плотность обычного видимого вещества. Такого, конечно, не может быть. Следовательно, в сегодняшней Вселенной монополей практически нет. Куда же они делись?
Эта загадка получила название «проблемы монополей».
Перечисленные загадки связаны с теми процессами, которые происходили в самом начале расширения Вселенной, т. е. в них в зашифрованном виде хранится тайна начала. Оставалось подобрать ключ к шифру.
Мы изложим гипотезы, которые по современным представлениям описывают начало Большого взрыва. Ключ к пониманию «первотолчка» лежит в возникновении особого, так называемого вакуумноподобного состояния вещества, которое может возникать при очень большой плотности. В современной физике под большой плотностью понимается плотность, близкая к величине, определяемой тремя фундаментальными постоянными: G — постоянной тяготения, h — постоянной Планка и c — скоростью света:
Огромность этой величины трудно вообразить. Плотность получила название планковской. Согласно теории, при плотностях близких к планковской, в веществе могут возникать особые состояния, характеризуемые сильнейшими натяжениями, или, что то же самое, отрицательными давлениями. Соотношение между плотностью ρ *и давлением Р *такого состояния имеет вид: Р *= —ρ *с 2. Именно такие состояния получили название вакуумноподобных.
Происхождение названия связано со следующим. Если в сегодняшней Вселенной из какой-то области пространства удалить все реальные частицы и поля, то эта область все же не может считаться «абсолютной пустотой (вакуумом)». Дело в том, что в пустоте все время происходит рождение и уничтожение так называемых виртуальных пар — частиц и античастиц, происходят своеобразные «квантовые флуктуации вакуума»: Следствия этих процессов измеряются в тонких экспериментах.
Квантовые флуктуации вакуума не могут быть устранены. Возможным следствием этих процессов является наличие очень небольшой плотности вакуума ρ ви отрицательного давления (физически это означает натяжение) P в. При этом должно выполняться соотношение p в= —ρ в∙с 2. Любое состояние вещества, в котором давление и плотность связаны таким соотношением, получило название вакуумноподобного. Особенностью вакуумноподобного состояния является то, что оно не меняется при расширении — плотность и давление его остаются постоянными.
Следующее важное обстоятельство связано с уточнением Эйнштейном закона всемирного тяготения Ньютона. Согласно Эйнштейну, в создании гравитационных ускорений участвует не только плотность массы ρ, но и давление Р (или натяжение). Вместо ρ вформулу для вычисления тяготения входит сумма (ρ + 3P/c 2).
В обычных астрофизических условиях, например в звездах, второе слагаемое чрезвычайно мало. Но в случае вакуумноподобного состояния оно становится решающим. Подставляя в скобки P *= —ρ *с 2для этого случая, убеждаемся, что сумма в скобках становится отрицательной и гравитационное притяжение сменяется отталкиванием. Вот это отталкивание, имеющее не гидродинамический (как в случае перепада давлений), а чисто гравитационный характер, вероятно, и послужило тем «первотолчком», который привел к расширению Вселенной.
Любые две частицы в такой очень ранней Вселенной двигались с нарастающей скоростью друг от друга. При этом плотность вакуумноподобного состояния ρ *, как уже говорилось, с расширением не уменьшалась, не уменьшалось и натяжение (отрицательное давление) Р *и ускоряющая сила действовала постоянно [4]. Легко показать, что при этом расстояния между частицами увеличиваются по экспоненциальному закону, т. е. чрезвычайно стремительно: R = R 0∙ ехр(3∙10 43∙t (с)). Этот процесс получил название инфляции (на английском — раздувание). Он, вероятно, продолжался с t ≈ 3∙10 -44с, когда плотность массы и частиц и вакуумноподобного состояния была около планковского значения ρ п≈ 10 94г/см 3, до t ≈ 3∙10 -35с. К концу этого периода все частицы разлетелись на невообразимо большие расстояния — порядка 10 4∙100000000парсеков друг от друга. Для сравнения напомним, что размер всей видимой сегодня Вселенной «всего» примерно 10 10парсеков! В той ранней Вселенной практически не было частиц, настолько они были редки, и температура практически не отличалась от -абсолютного нуля. Единственное, что осталось во Вселенной к концу раздувания, — это вакуумноподобное состояние. Но такое состояние неустойчиво и при t примерно равном 3∙10 -35с оно распалось на обычные частицы, движущиеся с ультрарелятивистскими скоростями. Температура во Вселенной в ходе распада вакуумноподобного состояния подскочила примерно до T ≈ 10 27К. Вселенная стала горячей! Это был конец инфляции — вакуумноподобное состояние исчезло. Дальнейшее расширение Вселенной протекало с замедлением, вследствие взаимного тяготения частиц обычного вещества. Последующая судьба расширяющегося горячего вещества описана в предыдущем разделе.
Предположение о том, что огромные отрицательные давления, а значит, и гравитационное отталкивание могут возникать при очень больших плотностях вещества, было сделано в конце 60-х годов Э. Б. Глинером. В 1972 г. Д. А. Киржниц и А. Д. Линде показали, что подобное состояние может естественно возникать в расширяющейся Вселенной с понижением температуры и плотности от очень больших значений. Несколько позже эти первые идеи были развиты применительно к космологии в работах Э. Б. Глинера, Л. Э, Гуревича, И. Г. Дымниковой, а затем, с использованием новейших достижений физики высоких энергий — А. Гусом, А. Альбрехтом, П. Стейнхартом в США, а у нас в стране — А. Д. Линде, А. А. Старобинским и многими другими.
4
Эта ускоряющая сила на другом языке описывается введением уже упоминавшегося Л-члена в уравнения Эйнштейна. Данное обстоятельство подчеркивалось Я. Б. Зельдовичем.