Выбрать главу

Проблема в том, что вирусы, как бы мы ни пытались сделать их безопасными, все равно могут вызвать у человека какие-то негативные последствия. Именно это произошло с Джесси Гелсинджером. У него было редкое генетическое заболевание, которое приводило к накоплению аммония в крови. Более тяжелые формы этой болезни приводят к гибели на первом месяце жизни, но у Джесси была относительно легкая форма, которую у него диагностировали в двухлетнем возрасте, и он находился на специальной диете, потребляя еще и по несколько десятков различных лекарственных препаратов ежедневно. Ему ввели нормальную копию гена в составе аденовирусного вектора, но, увы, какой-то фактор оказался неучтенным. Молодой человек в короткий срок скончался от побочных явлений. Дальнейшие исследования в области генной терапии по требованию регулятора (американского Управления по санитарному надзору за качеством пищевых продуктов и медикаментов, FDA) пришлось немедленно прекратить.

Когда стали разбираться, почему произошла эта дня, то выяснились два важных момента. Во-первых был нарушен протокол и пациенту ввели чуть ли не в сто раз больше вирусного вектора, чем было запланировано. Во-вторых, у пациента, который был тяжело болен на протяжении последних шестнадцати лет, оказалась гиперчувствительность именно к аденовирусу, который использовался в качестве вектора.

В общем-то, произошел несчастный случай, но если мы хотим применять генную терапию, то должны гораздо лучше знать особенности индивидуальных геномов, чтобы не возникали неожиданные побочные последствия.

Несмотря на все «недетские» проблемы первоначального периода, генная терапия продолжала интенсивно развиваться. В 2009 году авторитетный научный журнал Science назвал успех генной терапии одним из величайших достижений первого десятилетия XXI века.

Какие же конкретные достижения генной терапии дали основание для такого лестного вывода? Первое из них — устранение генетического заболевания под названием амавроз Лебера, главным симптомом которого является полная слепота с детства.

Врожденный амавроз Лебера

Глаз человека имеет удивительное строение. Он чем-то похож на фотоаппарат или камеру смартфона, у которых есть фотопленка или светочувствительная матрица, где формируется изображение. В фотопленке светочувствительными элементами были зерна серебра, а в современном смартфоне их аналогами являются фотодиоды — маленькие элементы из кремния или другого полупроводника. Фотодиоды преобразуют световой импульс в электрический и передают его дальше — для программной обработки изображения.

А у нас в глазу находятся светочувствительные клетки (фоторецепторы), которые вместо серебра или кремния содержат особые белковые структуры — диски, уложенные один на другой, как стопка монет. Когда на верхний диск попадает квант света, начинается химическая реакция, которая преобразуется в электрохимический импульс. Именно так элемент изображения попадает в нашу центральную нервную систему — в мозг, где происходит обработка полученных сигналов.

К сожалению, эти диски, как и зерна серебра в фотопленке, расходуются по мере использования. Для здорового организма в этом нет ничего страшного, так как на смену израсходованным дискам, подпирая их снизу, поднимаются вновь синтезированные такие же белковые структуры. Однако прежние диски необходимо утилизировать должным образом, ведь если подобный «мусор» оставлять в клетке или выбрасывать наружу, то с годами пробиться через эту преграду не сможет никакой свет. Поэтому рядом с клетками-фоторецепторами расположены клетки пигментного эпителия сетчатки — профессиональные мусорщики! Они энергично поглощают сброшенные фоторецепторами использованные диски. Если же эти белковые диски по какой-то причине не уничтожаются как мусор, фоторецепторные клетки либо не развиваются, либо деградируют.